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PREFACE

The research herein reported was funded by the Transportation Advanced
Research Program (TARP) under the auspices of the Office of the Secretary,
Department of Transportation. Technical review is the responsibility of the
Special Studies Branch, Research Division, Transportation Systems Center.
The objective of the TARP program is to stimulate basic scientific research
in areas that are of major importance to the Department of Transportation.
This particular project is intended to develop computerizable algorithms
that will permit network analysis techniques to be applied to very large

networks.
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1. INTRODUCTION AND SUMMARY

1.1 BACKGROUND

Many of the network problems of current practical interest to the
Department of Transportation (DOT) are too large to be solved directly: they
must be solved by either abstraction, extraction, or decomposition. Abstraction
refers to combining groups of nodes and arcs in order to obtain a smaller net-
work. Extraction refers to selecting a subnetwork and analyzing it in isolatiom.
And decomposition, which is the subject of this report, refers to dividing the
original network into subnetworks, which are then analyzed partly in isolation
and partly in combination. In addition to being decomposed by subnetworks, a
problem may also be decomposed by mode, commodity, or time period. Note that
decomposition provides the actual solution to the original problem, whereas
abstraction and extraction only provide approximate solutions. A variety of

decomposition techniques have been devised for various types of problems. This

report will show how decomposition can be applied to five specific network pro-

blems in transportation:

a) traffic assignment with fixed demands;

b) traffic assignment with elastic demands;
c) network design;

d) optimal staging of investments over time;
e) sub-area focusing.

For each of these network problems, Table 1.1 briefly describes the problem, the
decomposition solution technique, and some of the potential applications. The
remainder of this introductory section summarizes our results for each of these
problem areas. 1In all cases, we limited ourselves to problem formulations and

solution techniques which could handle large network problems: such as 1,000



TABLE 1.1

SUMMARY OF TRANSPORTATION PROBLEMS STUDIED

Decomposition Solution

Problem Description Method Potential Aoplication
Traffic Assignment- Distribute given interzonal Solve a subproblem for a. Mass transit planning.
Fixed Demand trip demands to alternate each source usina a
routes between these zones. | spannina tree or b. Intercity hiahway plan-
The objective is to obtain shortest path alaori- ning.
either a user equilibrium thm. This method can .
or a systems optimal as- be further decomposed c. Rail network plannina
signment. The demands are by aeographic reqions and analysis of inter-
fixed and do not respond using Generalized company competition.
to changes in travel costs. | Benders decomposition. d. Peal-time highway traf-
Convex GUB may be re- fic routina and freight
quired to speed up con- car management.
vergence.
e. Commodity movements.
f. Air traffic flow analy-
sis.
Traffic Assignment- This is the same as above, Expand dimensions of Same as above.
Elastic Demand except that the origin- network to obtain an
destination demands do re- eauivalent fixed demand
spond to changes in travel traffic assianment orob-
costs. lem, which is then
solved as described
above.
Network Design Deternine the optimal in- Use Laaranae multipler a. Intercity hichwav plan-
vestrents with which to technioue to handle nina; imnrovement ang
. expand a transportation budget constraint. new construction.
network to minimize user Solve a sub-nroblem
travel costs subject to a for each link to con- t. Pail Tine rehabilitation:
budget constraint. In- struct objective func- analysis of loan auaran-
vestments may be used to tion for master, which tee and subsidv process.
expand the capacity is solved by a traffic
of existing links or to assignment alaorithm. c. Multi-modal competition

introduce new links.

This method can be fur-
ther decomoosed by aeo-
aranhic reqions usina
Generalized Peports de-
comoosition.

and interactions; analy-
sis of leaislation, in-
vestments, incentives;
planning for transoarta-
tion for energy commodi-
ties.

Optimal Staging
of Investments
over Time

Determine the optimal se-
quence or staging of
network investment deci-
sions over a planning ho-
rizon to minimize user
travel costs subject to

a budget constraint for
each stage of the horizon.
The final network configu-
ration at the end of ho-
rizon may or may not be
specified.

Use dynamic oroaraming
to decompose oroblem
into a series of network
desian problems. This
method can be further
decomposed by aeogranhic
regions using General-
ized 8enders decomposi-
tion.

Same as above.

Geographic De-
composition and
Sub-Area Focusina

in the sub-area focusinag
problem, a sub-area is ex-
tracted from a verv large
network so that detailed
changes to this sub-area
can be examined, Assian
traffic within this sub-
area by approximating how
demand external to the
sub-area will change in
response to changes in the
sub-area network.

Use Generalized Benders
decomposition to decom-
pose traffic assignment
oroblem into separate
geoaraphic areas. The
focusing oroblen re-
quires repeated solution
of the Benders' master
and the sub-area's prob-
lem.

. Sinoie rmode olanning and

2nalysis: decomnosition
of nation by reaion or
state; decomposition by
operating rail company;
analysis of inter-com-
pany competition.

. Mylti-mode planning and

analysis: decomposition
by modes or authorities;
analysis of multi-mode
composition.

. Mass t-ansit planning by

sub-area focusing.

9]




nodes and 3,000 links. In the Appendix is a brief discussion of the decom-
position methods that were used in our analysis of the foregoing network
problems.

1.2 TRAFFIC ASSIGNMENT PROBLEM -- FIXED DEMAND

The traffic assignment problem with fixed demands distribute

given interzonal trip demands to alternate route between these zones. The demands
are fixed and do not respond to changes in travel costs. The objective is to
cbtain either a user equilibrium or a systems optimal assignment. This problem
is not only interesting in itself, but, as we will show in Sections 3-6, it also pro-
vides the basis for our solution techniques for several other problems: traffic
assignment with elastic demands, network design, investment staging, and sub-
area focusing. In Section 2, we discuss three decomposition methods for solving
the traffic assignment problem with fixed demands. The first method is based
upon the Frank-Wolfe algorithm [1]. The second method is based upon Zangwill's
convex simplex method [2]. Both of these first two methods have been proposed and
implemented by other authors for the solution of the traffic assignment problem.
The third method, called Convex-Generalized Upper Bounding (Convex-GUB), is a
new proposal, and it is based upon the generalized upper bounding technique of
Dantzig and Van Slyke [3]. 1In Section 2, the strengths and weaknesses of these
three decomposition methods are compared.
1.3 TRAFFIC ASSIGNMENT PROBLEM =-- ELASTIC DEMAND

In the traffic assignment problem with elastic demands, the number
of trips between a particular origin and destination is allowed to depend upon
the cost of travel between that pair of zones (or nodes), and this relationship
is specified by a demand function. The problem is to determine the user equili-

brium traffic assignment subject to these elastic demand functions. Section 3



discusses three decomposition methods for solving this problem. All of these
techniques solve the elastic demand problem by converting it into a fixed demand
problem. The first method was originally introduced by Florian and Nguyen [4],
and it uses Benders decomposition [5] to reduce the elastic demand problem into a
fixed demand traffic assignment problem. Unfortunately, it also requires the
solution of a master problem and restricts the solution of the fixed demand traf-
fic assignment problem to a special class of algorithms. The second and third
methods are new proposals in which we show how the Frank-Wolfe or convex simplex
algorithms (both introduced in Section 2) can be used to solve the elastic demand
problem, by solving a fixed demand traffic assignment problem over an expanded

network.

1.4  NETWORK DESIGN

The network design problem is concerned with the addition or

modification of links within a transportation infrastructure so that social
costs of transportation are minimized subject to a budget constraint. The
network could refer to either rail, highway, or mass transit applications.

A general convex network design model is formulated in Section 4 that is re-
lated to models developed by Steenbrink [6, 7 1 Morlok, Schofer, et al. at
Northwestern University [8]; and Dafermos [9]. We will show that the basic
decomposition procedure devised by Steenbrink can be used to obtain the global
optimal solution to this general model by solving a series of traffic assign-
ment problems. Our network design formulation has the following features:

a) Investment Decision Variables. The algorithm determines the

optimal solution with respect to continuous investment decision variables.

b) Systems Optimal Traffic Assignment. The formulation is based

upon systems optimal traffic assignment, which is the preferred assignment

in rail or mass transit applications, although user equilibrium assignment



would be preferred in highway applications. Section 4.1 gives bounds on the

user equilibrium design problem using only the solution to the systems optimal
design problem; if these bounds were close, then this would justify using the
network design based on systems optimal assignment in an application in which

user equilibrium assignment was preferred.

c) Travel Time as a Function of Flow and Investment. The model assumes

that the total travel time on a link is a continuous convex function of the flow
and investment decision for that link. This includes as special cases the non-
linear differentiable curve, similar to the FHWA (the U.S. Federal Highway
Administration) travel time function, used by Steenbrink [6, 7]; the Piecewise
linear curve used by the Northwestern group [8]; and the quadratic curve used by

Dafermos [9].

d) Investment Cost Function. The model assumes that the cost for

making an investment on a link is a continuous convex function of the investment
decision.

e) Investment Alternatives. If the only effect of investment is to

increase the capacity on existing links, then Section 4.2.1 shows how this

could be implemented with a differentiable travel time curve; and if the effect
of investment is to change either or both the free-flow travel time and capacity
on existing links, then we show in Section 4.2.2 how this could be done with a
piecewise linear travel time curve. The piecewise linear approach can also
handle the introduction of entirely new links by specifying their initial capa-
city as being zero.

£) Solution Algorithm. For the case in which there is no budget con-

straint but the investment cost is included in the objective function, Section
4.3 shows how the solution to the network design problem could be obtained by

solving a traffic assignment problem. For the case in which a budget constraint



is used, then Section 4.4 gives a Lagrange multiplier technique that obtains a
solution to the design problem by solving a series of traffic assignment problems,

one for each value of the multiplier.

1.5 OPTIMAL STAGING OF INVESTMENTIS OVER TIME

The network design model only treats a static problem: a network

was to be examined for possible link additions or modifications, without regard
to the sequence or timing of the implementation of these changes. However, it
may be desirable to perform long-range planning for a highway, mass transit,

or rail network in which investments are to be planned during each stage (or
year) in a multi-stage horizon, subject to a budget constraint on the total
investment in each stage. The staging problem is based on the observation that
all network improvements would not contribute equally towards the efficient
functioning of the system: some should be added early and some can be delayed.
The analysis is complicated by the fact that the user benefits derived from
improvements on different links are interrelated in a complex way through the
network structure. We consider two variations of the staging problem in Section
5:

a) The final configuration is not specified. 1In this case the staging

model would determine both the final configuration and the order in which the
investments would occur.

b) The final configuration is specified. 1In this case the staging

model would determine only the order in which the recommended network investments
should be constructed over the horizon.

The objective function used in two previous formulations of the staging
problem, Bergendahl [10] and Schimpeler-Corradino Associates [11], was to

minimize the weighted sum of costs for each individual stage. The difficulty

6



with this approach is that it becomes intractable for large networks. An alter-
native objective function can be specified by the application of the lexicographic
ordering rule of vector analysis, and this can be viewed as being a generalization
of a technique that was suggested by Roberts [12]. The method we propose in
Section 5 uses an objective function based upon the lexicographic rule, contin-
uous investment decision variables, and systems optimal traffic assignment.

Using a decomposition procedure based upon dynamic programming, we show in Section
5 that a T-stage staging problem can be decomposed into T single-stage network
design models if the final configuration is not specified, and that it can be
decomposed into T-1 single-stage network design models if the final configuration

is specified. As demonstrated in Section 4, the network design model with a budget

constraint, continuous investment decision variables, and systems optimal assign-
ment can be decomposed into a series of traffic assignment problems using the
Lagrange multiplier technique. We are, therefore, able to decompose the staging

model into a series of traffic assignment problems.

1.6 SOLVING TRAFFIC ASSIGNMENT AND SUB-AREA FOCUSING PROBLEMS BY GEOGRAPHIC
DECOMPOSITION
Sections 2 - 5 discuss several large network problems in transportation:
user equilibrium traffic assignment with fixed demands; systems optimal

traffic assignment with fixed demands; user equilibrium traffic assignment with
elastic demands; network design; and staging. Section 6 presents a new method,
based upon Generalized Benders decomposition [5], which is able to provide a
geographic separation of any of the foregoing network problems into smaller,
more manageable subproblems. Geographic decomposition is based upon the obser-
vation that large transportation networks are often only loosely connected:

if a small set of links are deleted, then the original network will decompose

into a series of disjointed subnetworks. Although this methodology is equally

7



applicable to any of these network problems, for the sake of expositional simpli-
city, we limit our discussion in Section 6 to the user equilibrium traffic
assignment problem with fixed demands and to a new application, which Dial [13]
has called sub-area focusing.

The sub-area focusing problem involves the extraction from a very large
network of a sub-area, often called a window, so that detailed changes to the
window can be examined. The so-called "sub-area windowing problem" makes the
simplistic assumption that there will be no changes in flows or demands external
to the window's network; however, the so-called "sub-area focusing problem"

attempts to approximate changes in the external demands that could affect flows

within the window. Therefore, sub-area focusing provides an estimate of how
the whole network will respond to the changes within the window. As we show

in Section 6, the analysis of a network using geographic decomposition involves
the use of dual variables. The key observation is that the dual variables on
the nodes external to the window can predict how demands will shift in response
to changes within the window. This implies that geographic decomposition does

provide an approach for efficiently performing sub-area focusing.



1.7 REFERENCES

1.

10.

11.

12,

15.

M. Frank and P. Wolfe, "An Algorithm of Quadratic Programming," Naval
Research Logistics Quarterly, Vol. 3%, p. 95-110, 1956.

W. I. Zangwill, Nonlinear Programming, A Unified Approach, Prentice-Hall,
Englewood Cliffs NJ, 1969.

G. B, Dantzig and R. M. Van Slyke, "Generalized Upper Bounding Techniques,"
Journal of Computer System Science, Vol 1, p. 213-226, 1567.

M. Florian and S. Nguyen, "A Method for Computing Network Equilibrium with
Elastic Demands," Transportation Science, Vol 8, No. 4, p. 321-332, 197kL.

A. M. Geoffrion, "Generalized Benders Decomposition," J. Optimization Theory
and Applications, Vol 10, No. L4, p. 237-260, 1972.

P. A. Steenbrink, "Transport Network Optimization in the Dutch Integral
Transportation Study," Transportation Research, Vol 8, p. 11-27, 197L.

P. A. Steenbrink, Optimization of Transport Networks, Wiley, New York NY, 197k,

E. K. Morlok, J. L. Schofer, W. P. Pierskalla, R, E. Marsten, S. K. Agarwal,
J. L. Edwards, L. J. LeBlanc, D. T. Spacek, and J. W. Stoner, Development
and Application of a Highway Network Design Model (Final Report prepared for
Federal Highway Administration, Environmental Planning Branch), Department
of Civil Engineering, Northwestern University, Evanmston IL, 1973, ch. b,

S. C. Dafermos, Traffic Assignment and Resource Allocation in Transportation
Networks, Ph.D. Thesis, The Johns Hopkins University, Baltimore MD, 1968,
ch, 3.

G. Bergendahl, "A Combined Linear and Dynamic Programming Model for Inter-
dependent Road Investment Planning," Transportation Research, Vol., 3, p. 211~

228, 1969.

Schimpeler-Corradino Associates, Optimum Staging of Projects in a Highway
Plan, prepared for Federal Highway Administration, Office of Highway Planning,
Washington DC, 197k,

P. 0. Roberts, Transport Planning: Models for Developing Countries, Ph.D.
Thesis, Department of Civil Engineering, Northwestern University, Fvanston IL,
1966, ch. 3.3.

R. B. Dial, "The Development of UMIA's Transportation Planning System,"
Presented at the 1974 Annual Meeting of the Highway Research Board,
Washington DC, January 197k.




2. TRAFFIC ASSIGNMENT PROBLEM -- FIXED DEMANDS

2.1 TINTRODUCTION

The traffice assignment problems distributes interzonal trip demands

to alternate routes between these zones. In this section we consider only the
fixed demand case in which the demands do not respond to changes in travel costs.
The traffic assignment problem with fixed demands is not only an interesting pro-
blem in itself, but as we will show in Sections 3-6, this problem also arises in
the analysis of other problems, such as traffic assignment with elastic demands,
network design, investment staging, and sub-area focusing. In this section we
will examine decomposition methods for the solution of the traffic assignment
problem with fixed demands, and we will be concerned only with methods that have
proven or in our opinion have the potential to be effective in the solution of
realistically sized problems. Accordingly, we will only examine methods that

can solve a traffic assignment problem which has at least 1,000 nodes and 3,000

links.

A great number of papers have appeared that propose both elegant and
sophisticated solutions of the traffic assignment problem. Reviews of the various
proposals can be found in Leblanc [1], Nguyen [2], Ruiter [3], Potts and Oliver [4],
Petersen [5], and Murchland [6]. These proposals can be conveniently classified

as either capacity constraint methods or equilibrium methods (See Nguyen [2]).

Capacity constraint methods are characterized by heuristic procedures

for determining the traffic flow patterns. Unfortunately, these methods can

neither guarantee convergence to the optimal solution, nor in most cases, can they

determine a bound on how far the obtained solution is from the optimal solution.
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On the other hand, equilibrium methods guarantee convergence to the optimal
solution, are iterative in nature, and usually generate a bound on the difference
between their current solution value and the optimal solution. Here, however,
we must be careful to distinguish between methods that have the potential to
solve problems of realistic size and those thatdo not. For example, one of the
latest proposals is the primal-dual procedure of Petersen [5], which was tested
on a 72 node problem with 147 links and required 3 minutes of CDC 6600 time.
Another test, by Leventhal, Nemhauser, and Trotter {7], using a column generation
scheme on a problem with 64 nodes, but only 5 origin-destination pairs, required
between 1 and 4 minutes on an IBM 360/65. Such tests give little information on
how the algorithm will perform on problems of a 1,000 nodes or more. Therefore,
the focus of this analysis will be on traffic assignment codes that use equilibrium

methods, but yet still have the potential to solve realistically sized problems.

2.2 PROBLEM FORMULATION

The traffic assignment problem with fixed demands, can be formulated as:

MINIMIZE Z = z Tj(fj) , @B
jeA

with respect to: f§ and fj’ jeA, r=1, ...,R,

subject to

r r _ .r M. m
z £ - Z £ = n o, (i€N; r=1, ...,R) , (2)

e .
j W:.L JEVi

r=R
f.=z £ (jeA) (3)



20, (jeA; r=1, ...,R) (4)

where
A = the set of links in the network
f; = flow on link j from origin r
_oij if i is a destination node
nt = z 0 . if 1 =1
i rj
jeA
0 otherwise
N = the set of nodes in the network
14 = the number of trips originating at origin i and terminating at
] destination j
R = the number of origin nodes in the network
T.(f.) = the total travel cost function for link j, which depends only
33 on the flow f, on link j
Vi = the set of links terminating at node i
Wi = the set of links originating at node i.

The cost functions Tj(fj) can be given two different interpretations dependi
upon whether the planner is interested in a system optimal or a user equilibrium
solution. To differentiate between these two alternatives, we must define the
marginal link cost function:

Cj(fj) = the link marginal (per unit) cost function, where fj is the

total flow on link j.
The function Cj(fj) is assumed to be a nonnegative, differentiable, and non-
decreasing function of fj' With this interpretation for Cj(fj), we have the

following alternative specifications for Tj:
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a) System Optimal

Tj(fj) = Cj(fj) . fj 5

where the flow pattern found by solving (1) - (4) will minimize the total system
travel cost.

b) User Equilibrium

%
Tj(fj)E _[ Cj(x) dx
0
where the flow pattern found by solving (1) to (4) will have the property that no
traveler can decrease his cost by changing paths, given that all others remain on
their present paths. This flow pattern may be referred to as a Nash equilbrium
point (See Dafermos and Sparrow [8]).

The equations (2) to (4) of the constraints for this problem are often
referred to as the node-arc formulation of the convex cost multicommodity flow
problem. An alternative formulation of the problem may be derived along the lines
of Leventhal, Nemhauser, and Trotter [7] and is usually referred to as the arc-
chain formulation of the problem. Since the algorithms we will consider in the
latter part of this section can be adequately described in terms of the node-arc
formulation, we will not burden the reader with this additional mathematical
notation.

It is important at this point to draw attention to a special case of the
formulation (1) to (4), where instead of using the differentiable and convex cost
functions Tj(fj) we choose to use piecewise linear approximations to these func-
tions. If we assume there are M.j breakpoints associated with the piecewise linear

approximation, then equation (3) may be replaced by:
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J
r .

m m . .
0 ixj .<_.Kj 3 (JEA; m=1, ...,Mj) 3 (3".

m . . . . . . .
where Kj are the breakpoints in the piecewise linear approximation. If we now
. m . . . . .
define Cj as the slope of the appropriate linear segments in the approximation,

we obtain the linear form of the objective function as:

m=M,

3
MINIMIZE z=z Z c‘Jf‘ x‘JT‘. a"

jeA m=1

This formulation of our problem, which we will refer to as the linear
cost multicommodity flow problem, has a long history in the literature of network
flows. In fact, it was a proposed solution method by Ford and Fulkerson [9] for
this problem that eventually led to the Dantzig and Wolfe [10] decomposition
principle. Moreover, this particular linear form of our basic model is very
important in the remainder of this report, because our models of the network
design (Section 4) and investment staging (Section 5) problems utilize this
formulation. Finally, the proposed Convex-GUB procedure (Section 2.3.3) for solvin

the original convex formulation (1) to (4) of the traffic assignment problem is ba;

principles that were developed to solve the linear cost multicommodity flow pro-
blem. See, for example, the work of Maier [11] and Hartman and Lasdon [12] on

this subject. With the mathematical formulations specified, we are now in a
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position to discuss solution methods that meet our twin criteria of being based on
sound algorithmic principles and yet still be capable of solving realistically
sized problems.
2.3 SOLUTION METHODS

It is not our intent in this report to review, critique, and
computationally compare all the proposed solution methods for the traffic
assignment problem that have appeared in the literature, although we believe

this to be an important area for future work. We will, however, discuss two basic
algorithmic approaches which have been previously developed and implemented by

other investigators, as well as present a new proposal.

Our selection of these three methods is based upon the following three
criteria. First, we examined published meaningful computational results.
Meaningful to us meant that the problems solved were based on actual transporta-
tion data and of realistic size. Only one computational study qualified under
this criteria, and it is reported by Florian and Nguyen in [13], [14], and [2].

Second, we were only interested in algorithms that would have the
flexibility to solve our formulation of the network design problem (described
in Section 4), the investment staging problem (described in Section 5), and the
geographic decomposition method for sub-area focusing (described in Section 6).
These three problems place special requirements on a traffic assignment algorithm.
The network design and investment staging problems generate objective functions
that, although convex, are generally not differentiable. The traffic assignment
algorithm will, therefore, require a derivative approximation technique. Since
convergence can now become uncertain, an objective function bound on the algorithm
will be most critical. The geographic decomposition approach, on the other hand,
generates artificial origins and destinations. These artificial origins and
destinations show up as modifications in the right-hand-side coefficients hi.
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This change in hz can not be accomodated by many traffic assignment solution
methods.

The final criterion in the selection of our algorithmic approaches can best
be described as judgmental, and is based upon the experience of the research
team with other large-scale mathematical programming problems. In this regard,
the availability of the knowledge and resources collected by the Systems Optimiza-
tion Laboratory at Stanford University is most important. The traffic assignment
problem possesses much structure in its mathematical formulation. We have already
pointed out that this problem can be described as a convex cost multicommodity flow
problem. Furthermore, the constraints, as we have formulated them, possess the

block-angular structure on which a great deal of research has been done. Therefore

drawing upon the experience of the research team, taking account of available

computational studies, and mindful of the special needs of our other problems,

we have selected the following approaches as most meeting the needs of this study.

2.3.1 FRANK-WOLFE APPROACH

One of the earliest proposed approaches to the solution of a

mathematical programming problem in which the constraints were linear, but the
objective function was convex and differentiable, is the method of Frank and
Wolfe [15]. A simple description of the method is as follows: the procedure
starts with a feasible solution to the problem. Then a linear approximation

to the objective function at the current solution value is generated. Using this
linear approximation to the objective function, a linear program is formulated
and solved. The solution to the linear program yields another feasible solution
to the original problem, which is usually called the trial solution. The final
step in the process consists of moving from the starting feasible solution in the
direction of the trial solution and stopping when the maximum decrease in the

objective function value is achieved.

16



This basic approach can be specialized to the traffic assignment pro-
blem by analyzing the generation of the trial solution. Nguyen [2] has shown
that for this particular problem the generation of the trial solution does not
require a linear program; rather, the trial solution is easily formed by assigning
all traffic to the least cost path between each origin~destination pair. The
computation of the least cost path can be found very efficiently by a shortest
path algorithm, such as that proposed by Dial [16]. Once the trial solution is
known, a simple one-dimensional search procedure, such as the Golden-Section
method [17], may be used to generate the new feasible solution.

This procedure has a number of important attributes. First, it is extremely
easy to program and requires a minimal amount of computer core storage. It is
not surprising, therefore, to find that it is the basic algorithmic procedure used
by the UTPS program UROAD. Second, the procedure produces an easily computed
bound on the optimal objective function value. Third, some rather simple modifications
to the procedure can be incorporated to allow for nondifferentiable cost functions,
as described by Ruiter [3]. Finally, we have some published computational ex-
perience with the procedure. In analyzing the transportation system for the City
of Winnepeg with 1,035 nodes, 2,789 links, and 140 origins, Florian and Nguyen [13]
found that the Frank-Wolfe algorithm required 15 to 18 trial solutions, which in
turn required 700 CPU seconds on a CDC Cyber 74 at a cost of $315. Although no
published results were made available to us by UMTA or FHA, discussions with their
key personnel indicated similar experience. UMTA also indicated that they had
attempted problems of much larger dimensions; however, they did terminate the
procedure after fewer iterations, and it was not clear whether a satisfactory

solution had been obtained.
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At this point we believe it important to voice one major concern about
this procedure. The Frank-Wolfe algorithm is no longer widely used as a method
to solve mathematical programs with convex costs and linear constraints. The
computational experience gathered over time has shown that this procedure has
one very undesirable characteristic: it converges very slowly. Unfortunately,
Nguyen [2] has observed that this phenomenon appears to be present in the solu-
tion of traffic assignment problems as well. 1In his study of the City of Winnipeg
he observed a significant 'tailing off phenomenon in the vicinity of the equili-
brium [solution]". We believe that in light of this history of convergence
problems a careful examination of the computational characteristics of the Frank-

Wolfe algorithm should be undertaken.

2.3.2 CONVEX SIMPLEX METHOD

Zangwill [18] has proposed a modification of the linear programming
simplex method in the case where the cohjzz-ive function is convex and
differentiable instead of linear. This procedure was specialized by Nguyen [14]
to the traffic assignment problem and proposed as an alternative to the Frank-

Wolfe method. In contrast to the simplicity of the Frank-Wolfe approach,

the convex simplex method (while conceptually similar) is a somewhat more complex
procedure. It is initiated by first applying to our original formulation (1) to (¢
a natural decomposition proposed by Murchland [6] of flows by point of origin (or
possibly by final destination). The result of this decomposition is a subproblem
P(r) defined as:
MINIMIZE z,. = :E: Tj(fj) ) (5
jeA

with respect to: f§ and f,, jeA.
J
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subject to:

Z fJF - 2 er. = hy (ieN) (6)
] 1

r r .
£i 0= £ 4 By, (ed) , (7N

’ (8)

r . i
where Hj is a constant equal to Z £, .

i#r

The subproblem P(r) is embedded in the following iterative decomposition
scheme:
Step 1
Find an initial feasible flow pattern
f§ , jeA, r=1, ...,R.
Set r=1.

Step 2

Solve the subproblem P(r).
Step 3
Revise the current flow pattern f§ based on the last solution of P(r).

If the current flow pattern is simultaneously optimal for all sub-
problems P(r), r=1, ...,R, terminate.

If r=R, set r=1; otherwise set r=r+l.

Return to Step 2.
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The great appeal of this decomposition scheme is that it has dramatically
reduced the size of the original multicommodity network flow problem (1) to (4)
which one must work with at any point in the procedure. For the traffic assign-
ment problems for the City of Winnipeg, which had 1,035 nodes, 2,789 links,
and 140 origins, the reduction is from 145,000 equations and 393,000 variables
in the original formulation (1) to (4) to only 1,000 constraints and 2,800 var-
iables in subproblem P(r). Moreover, not only is the problem P(r) much smaller
in size, but it is also a type of mathematical program that is easy to soclve.

The careful reader will no doubt recognize that this problem is the classical tra
shipment problem with convex costs. At this point, a number of avenues would
appear to be open with respect to the solution of the problem P(r).

Nguyen [4] in his analysis of the problem used a special adaptation of
the convex simplex method. In his procedure he divised some rather elaborate
techniques for maintaining a directed spanning tree upon which to make his flow
adjustments. [Note: A directed spanning tree can be associated with an extreme
point solution, or in linear programming parlance, a basis.] The algorithm itsel
has many similarities to the work of Glover, Karney, and Klingman [19] on the
transshipment problem with linear costs. There has also been some more recent
work on the transshipment problem by Gordon Bradley, Gerald Brown, and Glenn Grav
[20]. 1In personal discussions with the authors, this latter group has indicated
they have devised a code that is a significant improvement over the work of Glove
Karney, and Klingman. One thing is certain: great care must be taken in con-
structing a code to solve the problem P(r) if one is to capitalize on all of the
previous work by other researchers. In our research on Convex Generalized Upper
Bounding (to be discussed in Section 2.3.3), we have developed our own variant o

Nguyen's approach which we believe has much promise.
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Florian and Nguyen [13] have performed some computational experiments
with their version of the convex simplex method. They again attempted to solve
the City of Winnipeg problem. One difficulty arose because of the following

compact representation of an intersection:

)
N

0

FIGURE 2,1--City of Winnipeg -- Original Problem.

It was found that for the convex simplex method solution, it was necessary to

restructure such intersections as follows:

N
l

N

FIGURE 2,2--City of Winnipeg =-- Restructured Solution.
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This in turn increased the number of nodes in the system by 217. However, even
with this larger network, the convex simplex method found a solution in about 500
CPU seconds on the CDC Cyber 74. This is somewhat less time than was consumed
by the Frank-Wolfe type algorithm on the same problem. Besides actual running
times, Nguyen [2] presents other data that show that the convex simplex method
does not appear to suffer from the convergence problems of the Frank-Wolfe
method. [It is possible to construct theoretical examples where the convergence
of both methods are painfully slow.] Nguyen also points out that because the con-
vex simplex method relies more heavily or auxiliary computer storage, the actual
cost for this approach, $297, is very nearly the same as the Frank-Wolfe method
cost of $315. We can summarize the computational results obtained by Florian and
Nguyen as supporting the hypothesis that these two methods are at least comparabl

One final comment on computational results. The heart of the Frank
Wolfe approach is an efficient shortest path algorithm. Our group has obtained
from Nguyen a copy of his Frank-Wolfe code and verified that he used a
very efficient version of this shortest path algorithm. On the otherhand, in
the convex simplex method the key to efficiency rests in the storage and updating
of the spanning trees. Unfortunately, we were unable to obtain from Nguyen a
copy of his convex simplex code. However, based on our own analysis of his
published work, we believe that he may not have used the most efficient means
of storing and updating the spanning trees. We believe, therefore, that it is
very likely that a more efficient version of the convex simplex approach could
be coded using the principles developed by Glover, Karney, and Klingman or Bradle
Brown, and Graves mentioned previously or one based on the features contained in
our Convex GUB algorithm, to be discussed in Section 2.3.3.

In order to complete our analysis of the convex simplex method, we will
now comment on how it conforms to the requirements of our network design, invest-
ment staging, and geographic decomposition models. Perhaps of greatest importan¢
is that the convex simplex method would permit the necessary modifications in the
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traffic assignment formulation to allow solution of our geographic decomposition
problem. Nguyen in [14] indicates that a bound on the value of the objective
function can be easily calculated for the convex simplex method. With such a
bound, it would then be possible to easily modify the procedure to yield approxi-~
mations to the derivative for the cost functions, similar to what has been done
in the case of the UROAD program. A derivative approximation routine would then

permit us to solve both the network design and staging problems by this method.

2.3.3 CONVEX GENERALIZED UPPER BOUNDING

The discussions of the foregoing two approaches for solving
the traffic assignment problem should have brought out the relation-

ship between this problem and the linear cost multicommodity f£low problem.

In fact, the lack of a differentiable cost function for the network design

and investment staging problems so modifies the resulting models that it

is perhaps better to think of them as being multicommodity flow problems with
piecewise linear costs. It is in the examination of the literature concerned
with the multicommodity flow problems that an interesting new idea was conceived.
The idea is based on the Dantzig and Van Slyke algorithm called Generalized
Upper Bounding [21]. Because we are applying this technique to a proplem with

a convex objective function, we have called the new procedure Convex Genqralized
Upper Bounding, or simply Convex-GUB.

Generalized Upper Bounding has been applied to the linear cost multi-
commodity flow problem by Maier in [11] and experimental results have been re-
ported by Grigoriadis and White [22] and Hartman and Lasdon {12]. Furthermore,
Carlos Winkler [23], in a study performed at the Stanford University System
Optimization Laboratory, has shown that this procedure appears to run faster
than the classical Dantzig - Wolfe decomposition principle [10] for general
linear programs that possess the block angular structure of the multicommodity

network flow problem.
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The Convex-GUB algorithm can best be thought of as a modification of the
convex simplex method discussed in the last section. In fact, any implementation
of this procedure would first be preceded by developing an efficient convex
simplex code. The principle behind the Convex—-GUB method is to increase the
interaction between the subproblems P(r) defined by applying the Murchland natural
decomposition by sources. Currently, the only'interaction that takes place
in the Murchland procedure is through changes in the constants HF, which are
defined by the flow levels on all links except those in subproblem P(r). 1In
the Murchland decomposition scheme, all flow changes must take place in only
one subprogram P(r) at a time. In the Convex-GUB procedure, a special "working
basis" is constructed that permits flow inter-changes to take place between
several subproblems P(r) simultaneously. With the working basis, it is then
possible to examine extremely congested links in a current solution and relieve
this congestion by a reduction in traffic flow in a number of the subproblems

P(r) simultaneously.
It is possible to construct hypothetical networks where the Frank-Wolfe
or convex simplex approaches would converge slowly (or even terminate before reaching

an optimum due to cut-offs built into the algorithm). We believe it is worthwhile

testing: (1) Whether these approaches are in fact achieving a near optimum

solution; and (2) whether convergence rates can be speeded up by use of the Convex

GUB procedure. If the convergence rates are good, probably a formula that bounds

the true minimum from below will suffice to test (1). An experimental version of
the Convex-GUB procedure has been written in the MPL language to test (2). [Note:

MPL is a mathematical programming language developed under a grant from the

National Science Foundation to Stanford University.]
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3. TRAFFIC ASSIGNMENT PROBLEM -~ ELASTIC DEMANDS

3.1 INTRODUCTION
The traffic assignment model formulated in Section 2 assumed a

known and constant origin-destination trip matrix. In this section we extend
this model to include the possibility of elastic demands for service; namely,
we consider the case where the number of trips between origin i and destination
j, denoted oij’ is 2 function of the travel time between these points. Thus our
problem is to determine the user equilibrium traffic assignment subject to these
elastic demand functions. The systems optimal objeétive function does not apply
to the elastic demand case.

We will present two formulations of this model. The first, which we call
the circulation formulation, appears to have been first proposed by Murchland [1].
Based on this formulation, Florian and Nguyen [2] have proposed a solution methodo-
logy which uses Geoffrion's generalized Benders decomposition [3]. Florian and
Nguyen's approach has considerable appeal, since these authors reported computa-
tional times that indicate the elastic demand problem can be solved with only 20
‘to 25 percent more effort than the fixed demand problem requires for the same
network. There are, however, two drawbacks to the Florian and Nguyen approach.
First, the approach requires the solution of a special subproblem corresponding
to the generalized Benders decomposition master problem. Although Florian and
Nguyen show this subproblem to be relatively easy to solve, it does require a
considerably more complex computer program than would be required to solve the
fixed demand traffic assignment problem. Second, after the decomposition is applied,
the problem reduces to the solution of a fixed demand traffic assignment problem;
but, unfortunately, this fixed demand problem requires a special algorithm for
solution, because this decomposition technique only allows the flows between one

origin-destination pair to be modified on any iteration. Because of this special
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requirement placed on the fixed demand traffic assignment algorithm, it does not
appear as though either the present UROAD program or the three algorithms pre-
sented in Section 2 could be used to solve the elastic demand traffic assignment
problem using the Florian and Nguyen approach.

In the second formulation that we will discuss, some additional nodes and
links are added to obtain an expanded network model, which is nevertheless equi-
valent to the circulation formulation presenfed first. This second formulation,
which we call the network formulation, has one major advantage over the cir-
culation formulation: namely, it permits us to use any standard fixed demand
traffic assignment algorithm to solve it. This means that either the current
UROAD program or programs based on the approaches presented in Section 2 could
be used to solve the elastic demand traffic assignment problem, and furthermore
this solution could be obtained without making any modification to the fixed
demand algorithm.

There is one disadvantage to this second formulation: we must solve a
slightly larger fixed demand traffic assignment problem than that solved in the
Florian and Nguyen approach. The network formulation requires 1 additional node
and 1 additional link for each commodity. Since the basic node-arc approach uses
R commodities (corresponding to the number of origin nodes in the network), this
means a total of R additional nodes and R links. The fact that the network for-
mulation has a larger number of nodes and links can be somewhat misleading. As
we shall discuss below, both the Frank-Wolfe and convex simplex methods (outlined
in Section 2) can be modified slightly so that the computational burden of the
additional nodes and links is insignificant.

3,2 PROBLEM FORMULATIONS

The traffic assignment problem with elastic demands can be formulated as:

28



subject to:

It

£ i=R

. j=R 0.,
Z ](;J Cj (x)dx - Z E j:J Dy (x)dx , (1)

icA i=1  j=1
with respect to: f., f., and O, jeA, r=1, ...,R, i=I, ceoR
J | ir
Do+ oo =0, 2)
JeVi

(r=1,...,R; ieN, i#r)

r=R
£, = fJ? , (jed) , (3)
r=1
f§3 o, (e r=1,...,R) , (4)
0,20, (i=1,...,R; j=1,...,R) , (5)

the set of links in the network,

the link marginal (per unit) cost function, where fj

is the total flow om link j,

the inverse of the demand function for service from origin

i to destination j [Note: Following Wigan [4], if we let
gij(uij) be the number of trips generated between origin i
and destination j, which is a function of the cost of travel
uij between these points, then Dij(oij) is the inverse of

this demand function.],
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the traffic flow on link j from origin r,
the set of nodes in the network,

the traffic flow generated by the demand functions from

origin i to destimation j,

the number of origin nodes in the network,
the set of links originating at node i,
the set of links terminating at node i,

1l if node 1 1is a destination node associated with node

r in the origin - destination matrix,

0 otherwise.

An equivalent formulation of this problem may be stated as:

i=R j=R
3 _ ij
MINIMIZE Z j C. (x)dx z z jo Di.(x)dx R
o . 4 0 J
i=1 ji=1

jeA

with respect to: fg,

'subject to:

> e

JEwi

fj, S 0_;» deA, r=l, ...,R, i=1, ...,R ,

?—Zfr.+<sf 0o.=0,
3 3 i ri
jEVi

(r=1,...,R; ieN, i#r) ,

0.,-s_=-H |, (r=1,...,R) ,

T Z fI: +s_=H (r=1,...,R) ,

3j j T r ?
jev
r=R
r
£, = f. jEA
p j (jea) ,
r=1

(6)

(N

(8)

€))

(10)



f;,: > 0, (jeA; r=1,...,R) (11)
Olji 0 2 (i=l" L ’R; j=ls' . "R) 2 (12)
Sr 2-0 H (r=l:""R) 2 (13)

where

[/}
1]

a slack flow variable associated with commodity r

=
1]

a large constant [Note: The value of H_ should be at least
as large as the maximum flow anticipated between origin r and
all associated destinations.] .

Equations (1) to (5) will be referred to as the circulation formulation and
equations (6) to (13) as the network formulation of the elastic demand traffic
assignment problem. Equation (9) in the second formulation can be omitted if
desired, since it is a redundant equation.

3.3 SOLUTION METHODS

As mentioned in the introduction, the circulation formulation of
the elastic demand model can be solved efficiently by the method proposed by Florian
and Nguyen [2]. The disadvantages of the Florian and Nguyen approach are that
it requires a special algorithm to solve the Benders master problem and another
special algorithm to solve the resulting fixed demand traffic assignment problem.

The network formulation (6) to (13) will now be examined. In deriving this
formulation we used a standard device from network flow theory, although to
the best of our knowledge, this formulation of the problem has not previously been
investigated in the traffic assignment literature. It is, however, a very useful
formulation of the problem. If the reader groups all the flow variables

r

(f;, O_., s ) together and treats them as though they were each associated with a
3j ri’> “r
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corresponding link in the network, and if he appends R additional nodes to the
network corresponding to equation (8), then the network formulation of the
elastic demand traffic assignment problem can be seen to be exactly equivalent
to a fixed demand traffic assignment problem. The resulting fixed demand traffic
assignment problem has N+R nodes and R-[Al + R2 + R 1links, where lA] is
the number of links in the set A.

It is interesting to compare this fixed demand traffic assignment problem
to the fixed demand traffic assignment problem that is a result of the Florian
and Nguyen procedure. The Florian and Nguyen procedure produces a fixed demand
traffic assignment problem with only N nodes and R-IAI links. This sybstantial
reduction in the number of nodes and links is of course gained at the expense
of having to solve a great number of Benders master problems. We will now discuss
how the Frank-Wolfe and convex simplex procedures (both presented in Section 2)
can be easily modified so that this apparent advantage of the Florian and Nguyen
approach almost disappears.
3.3.1 FRANK-WOLFE APPROACH
: In what follows, we assume the reader has read Section 2.3.1
which describes the steps of the Frank-Wolfe approach. The critical step in the
Frank-Wolfe algorithm is the calculation of the new trial solution. In the
traffic assignment problem this is accomplished by the computation of the shortest
path between each origin~destination pair. Using either the Dijsktra algorithm
[5] or Dial's version of the Moore algorithm [6], we select a particular source
node r and then find the shortest path from this node to all associated destina-
tion nodes. This same procedure is then repeated for all other origin nodes.
For the elastic demand traffic assignment problem, the computation of the shortest
path from node r to all associated destination nodes can be modified for computa-

tional efficiency.
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We begin by assuming that the maximum flow from origin r to destination

j is given as Hi, where we have defined

R

.
[

j=>]
I
a2
R
-

1

i
in the network formulation (6) to (13). Then let COSTi be the minimum cost
path from origin r to destination j found by applying the shortest path algori-
thm to the network composed of only the nodes in the set N and the links in the

set A. We then compute the trial solution associated with origin r as follows:

Set s_ =0 ,

For j =1,...,R do:
If coST) < D . (0_.), then place #) units of flow on the
r rj rj r

links associated with the minimum cost path from r to j.

Set 0_, = HJ.
rj r
If CoST? > D_.(0_.), set O_, = 0, and s_ = s_+ H)  (No
r— rj rj rj r r T
flow is placed on any links in the minimum cost path from r
to j.)

By repeating this process for each origin node r in turn, we will generate a
complete trial solution. Notice, however, that the shortest path algorithm
is only applied to the network (N,A), which is exactly the same size network

that Florian and Nguyen use in their procedure. We believe that this modified

version of the Frank-Wolfe algorithm should be as efficient as the Florian

and Nguyen procedure, although this is an open computational question.

3.3.2 CONVEX SIMPLEX METHOD

The important observation for the convex simplex method is

that the subproblem P(r), defined in Section 2.3.2 by equations (5) - (8),

does not involve all of N+R nodes and R |A| + R2 + R links of the network
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formulation (6) to (13). (We assume again that the reader is familiar with the
convex simplex method described in Section 2.3.2.) In fact, the subproblem P(r)

has only N+1 nodes and IAI + R + 1 links. It can be formulated as follows:

£ IR,
MINIMIZE ~ Z_ = Z fJ C (xdx - Z [‘3 D, ()dx ,
. o : o
jeA j=1
. r . .
with respect to: fj’ fj’ s> and Ori’ jeA, i=1, ...,R ,

subject to:

z ff—Zf?+6?o.=o,
] ] i ri

JEW, JEv,
(ieN, i#r)
r = -
- :E: Gi Or1 T8¢ T Hr 2
ieN
ir
z £7 - Z £ +s =H_
jew_ J jev_ J T

T .
fj >0 , (jed) ,
rj_>_0 ) (j=l, ’R) 2
Se 20,
r . i
where Kj is a constant equal to :E: fj.
ifr
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Although the subproblem P(r) above is slightly larger than the one
associated with the fixed demand traffic assignment case (having 1 additional node and
R + 1 additional links), the authors believe this problem can be solved almost as
efficiently as the fixed demand case. The reason for our optimism is that the
simplex method and its variants appear to be most sensitive to the number of equa~
tions (which has only grown by 1) and much less sensitive to the number of
variables (which has grown by R+ 1). 1In any case, this is another computational
question that needs further examination.

3.4 CONCLUSION

In this section, we have described three different computational approaches
to the elastic demand traffic assignment problem., The first, by Florian
and Nguyen [2], uses Generalized Benders decomposition to reduce the elastic
demand problem to a fixed demand traffic assignment problem. Unfortunately, it
also requires the solution of a master problem and restricts the solution of the
fixed demand traffic assignment problem to a special class of algorithms. How-
ever, computationally the procedure has some appeal, since it obtains solutions
in only 20 to 25 percent more time than the fixed demand case,

The second approach examined is the Frank-Wolfe algorithm originally
described in Section 2.3.1. This algorithm can be applied without modification

to an expanded network; but with only minor modification to the procedure for

computation of trial solutions, the shortest path portion of the Frank-Wolfe

algorithm can be applied to the same size network as used by Florian and Nguyen.

The final approach examined was the convex simplex algorithm described
in Section 2.3.2. This algorithm also needs no modification, but does involve
solving a somewhat larger equivalent fixed demand traffic assignment problem

than solved by either of the two previous approaches.
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The computational question as to which of these three procedures is most
efficient still remains open, but the effort required to implement either of

the last two methods is far less than that required to implement the first.
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4. NETWORK DESIGN MODEL

4,1 INTRODUCTION

The network design problem is concerned with the addition or
modification of links within a transportation infrastructure so that the social
costs of transportation are minimized. The network could refer to either rail,
highway, or mass transit applications. Network design models can be classified
in the following ways: whether the investment decision variables are discrete
or continuous; whether the traffic assignment is user equilibrium (first principle
s Wardrop) or systems optimal (second principle of Wardrop); and whether or not
the possibility of congestion is included into the formulation. Table k.1 dis-
plays some of the previous network design models and classifies these models

according to the foregoing factors [1 through 11].

It is probably desirable to use user equilibrium assignment when designing
highway networks and systems optimal assignment when designing rail or mass
transit networks. Refer to Section 2.2 for the definitions of these two types
of traffic assignment. In the case of user equilibrium assignment, the network
design problem becomes: determine the optimal network design to minimize total
users' travel time (plus possibly the investment costs) subject to user equili-
brium traffic assignment and a possible budget constraint on total investment.
This formulation is very difficult to solve for the following reason: the
objective function appropriate for the network design problem (minimizing
total travel time) is different from the objective function appropriate for
user equilibrium traffic assignment (minimizing the integral of the travel time
function). Because of this mathematical difficulty, user equilibrium network
design formulations, such as LeBlanc [4], can only handle small network problems.
In the case of systems optimal assignment, the network design problem becomes:

determine the optimal network design to minimize total users' travel time
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TABLE 4.1

CLASSIFICATION OF TRAWSPORT NETWORK DESIGN MODELS

Link Trovel
Investment Traffic ink lrave Solution
Author Year . - Time as : Objective
Variable Assignment Function of Algorithm J
Flow
Agarwal [1] 1973 Discrete Systems Piecewise Mixed integer Minimize total
Optimal Linear linear pro- travel costs
gramming subject to a
budget constraint
Carter and 1963 Continuous Systems Piecewise Dantzig-Wolfe Minimize total
Stowers [2] Optimal Linear Decomposition travel costs
plus investment
costs subject
to budget constraint
Dafermos [3] 1968 Continuous Systems Quadratic Gradient Minimize total
Optimal travel costs
subject to a budget
constraint
LeBlanc [4] 1973 Discrete User Piecewise Branch and Minimize total
Equilibrium Linear Bound travel costs
subject to a
budget
constraint
Northwestern 1973 Continuous Systems Piecewise Several methods Minimize total
[5] Agarwal [6] Optimal Linear including simplex,| travel costs
LeBlanc [7] Dantzig - Wolfe subject to a budget
Decomposition constraint
and Boxstep
Ridley [8] 1968 Discrete No Linear Branch and Minimize total
Difference Bound travel costs
: subject to a
budget constraint
Roberts [9] 1966 Discrete Systems Linear, Mixed integer Minimize total
Optimal with an linear pro- travel costs
upper bound gramming plus investment
on maximum costs subject to
flow a budget constraint
Steenbrirk 1974 Continuous Systems Non-Linear Constructs local | Minimize total
[10, 11] Optimal differentiable optimal solution | travel costs
using link decom- | plus investment
position followed | costs
by solution of a
traffic assign-
ment problem
1976 i Constructs globalj s s . -
Proposed Continuous Systems Convex X . Minimize total
: optimal solutien
Model, No. 1 Optimal usin 3 travel costs
g link decom- et
N plus investment
position followed costs
- by solution of a
traffic assignment
e probiem.
Proposed 1976 Continuous Systems Convex This is same as Minimize total
Model, No. 2 Optimal above, cxcept uses| travel costs
Lagrange multi- subject to a
plier to hanale budget constraint
budget constraint
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(plus possibly the investment costs) subject to systems optimal traffic assign-
ment and a possible budget constraint on total investment. Most of the net-
work design models listed in Table 4.1 use systems optimal assignment, because
the objective function is the same for both the network design and traffic
assignment problems, and thus it is a much more tractable formulation.

For those instances in which user equilibrium assignment would be pre-
ferrable in the design application (such as for highway networks), it can be
shown that the minimum total cost (total travel time plus possibly the invest-
ment costs) for the optimal network design with user equilibrium assignment will
be bounded by two numbers: from below, by the total cost for the optimal network
design with systems optimal assignment; and from above, by the total cost when
applying user equilibrium traffic assignment to the optimal network design that
was determined with systems optimal assignment. In other words, bounds on the
user equilibrium network design problem can be computed from the solution of the
systems optimal network design problem. For those instances in which these bounds
are close (perhaps within 3%), these bounds would justify the use of systems opti-
mal traffic assignment as being a valid approximation to user equilibrium assignmen

In general, it is necessary to use integer programming methods (such as
branch and bound) to solve models having discrete investment decision variables
(such as Agarwal [l], LeBlanc [4], Ridley 8] , and Roberts [9]). As a result,
these models will not be able to handle networks with sizeable dimensions, and,
as we have already indicated, neither will models which attempt user equilibrium
traffic assignment (such as LeBlanc [4]). According to our discussions with
representatives of DOT, in order for a network design model to be useful for

planning purposes it is necessary for that model to be able to handle networks
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having at least a thousand nodes and several thousand links. Only a network
design model that uses continuous investment variables and performs systems
optimal assignment could handle these large dimensions. The model developed
in this section is in that category and is similar to those proposed by
Dafermos [3], the Northwestern group [5], and Steenbrink [10, 11 ].

In her dissertation, Dafermos [3] formulated a network design model
which assumed that the total travel time on a link was a quadratic function of
the flow on that link and that the only effect of investment was to change
the link capacity, rather than the free-flow travel time. Using systems op-
timal traffic assignment with the differentiable objective function that she
proposed, Dafermos showed that a gradient technique could be employed to deter-
mine the global optimal solution to the design problem; however, no computational

results were given.

The Northwestern group [5 ] formulated the network design problem as a
linear programming model by assuming that the total travel time on a link could
be expressed as a piecewise linear function of the flow on that link and that
the only effect of investment was to shift the locations of the breakpoints
of this piecewise linear curve. The Northwestern group illustrated their approach
by solving a highway network consisting of 24 nodes and 76 links, using the stan-
dard simplex method, in about 15 minutes on a CDC 6400 computer. Thus a signifi-
cant difficulty with Northwestern's approach is the small size of problems which
can be solved. The Northwestern group also experimented with Dantzig-Wolfe de-
composition [12, 13] and the BOXSTEP method [14], but with little success.

Steenbrink.[lO, 11] used his model to plan the road investments in the
Netherlands for a network consisting of 351 origins and destinations, about
2,000 nodes, and about 6,000 links. A non-linear differentiable function,
similar to the highway travel time curve utilized by the U.S. Federal Highway

Administration (FHWA), was used to represent the total travel time on a link
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as a function of the traffic flow, capacity, and free-flow travel time on that
link, and the effect of the investment decision was to change the link
capacity. Steenbrink used the following decomposition approach: a separate
optimization problem was solved for each link, which created an objective
function for a master problem. If the resulting objective function were con-
vex, then the master problem would be equivalent to a traffic assignment problem
and thus could be solved with a traffic assignment algorithm. If the objective
function were not convex, then Steenbrink suggested that it could be approxi-
mated with a convex "envelope'" curve. Because Steenbrink used a non-convex
investment cost function in his study, the resulting objective function for
his master problem was not convex. To solve the master problem, Steenbrink
used an heuristic traffic assignment technique called SALMOF (Stepwise Assign-
ment according to the Least Marginal Objective Function) which could only
guarantee a local optimal solution, even if a comnvex objective function were used.
Thus, the network design algorithm developed by Steenbrink could only guarantee
local optimal solutions, although it could be used to solve the very large
network problems with which he was dealing.

In this report we will present a general convex network design model
that incorporates the following features: continuous investment decision var-
iables; systems optimal traffic assignment; the total travel time on a link is

expressed as a convex function of link flow and investment; and a convex investment

cost function. We will show that the basic decomposition procedure devised by
Steenbrink [10, 11 ] can be applied to obtain the global optimal solution to
this general model, which includes the following as special cases:

a) FHWA Curve with Changes in Link Capacity. The non-linear dif-

ferentiable FHWA curve is used to represent the total travel time on a link as

a function of the capacity and free-flow travel time on that link. The only
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effect of investment is to change the link capacity, not the free-flow travel
time. This basically was the case analyzed by Steenbrink.

b) Piecewise Linear Travel Time Function with Changes in Either or

Both Link Capacity and Free-Flow Travel Time. We will show that Steenbrink's

decomposition technique can be applied to give a very efficient solution to

the network design model formulated by the Northwestern group [5], which in-
cludes a piecewise linear travel time function. We will also show that North-
western's formulation can be extended to allow for changes to be made in either
or both link capacity and free-flow travel time.

c) Quadratic Travel Time Curve with Change in Link Capacity. We

will show that Steenbrink's decomposition technique can be applied to give a
very efficient solution to the network design model formulated by Dafermos [3],
which assumes a quadratic travel time curve with investment only affecting link
capacity.

Section 4.2 discusses the three basic travel time curves used in our
analyses: the FHWA function, that is similar to the curve used by Steenbrink
[10, 11 ]; the piecewise linear travel time curve that was used by Northwestern
[5]; and the quadratic curve proposed by Dafermos [3]. Section 4.3 considers the
problem of constructing or expanding links in order to minimize the sum of users'
and investment costs; and Section 4.4 considers the problem of constructing or
expanding links to minimize the users' cost subject to a budget constraint.
Because of the nature of the decomposition procedure being used, we will show
that the computational requirements for the network design formulation given
in Section 4.3 are approximately the same as for assigning traffic on a network
with the same dimensions. However, the computational requirements for the
formulation given in Section 4.4 will be greater, as a Lagrange multiplier

technique is used to handle the budget constraint.
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L,2 TRAVEL TIME AS FUNCTION OF FLOW AND INVESTMENT

An important step in obtaining mathematical formulation of the
network design problem is properly treating the interaction between travel time,
flow, and investment. Let Dj(fj’ zj) be the total travel time on link j as a
function of the link flow fj and investment decision zj for that link. This
section will discuss three ways of representing the function D.(f,, z.).

4,2.1 FHWA CURVE

A useful curve for modeling the total travel time on a link as a function

of flow on that link is in the following form:
k

f.
= _1
Tj(fj) tj fj [1 + r<cj> ], (1)

where

Tj(fj) = total travel time for all users on link j
fj = flow on link j
tj = free-flow travel time parameter for link j
Cj = capacity parameter for link j
r = constant
k = constant.

For example, the FHWA uses r = 0.15 and k = 4 for modelling highway congestion

(see COMSIS [15; page 35 ]). Steenbrink [10, 11] wused a similar function in
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his study of road investments in the Netherlands, except that he used k = 7 for
his initial test computatioms, and then later changed this parameter to k = 5.
We have defined Dj(fj, zj) to be the total travel time on link j as a
function of the flow fj and investment decision zj. If we assume that the only
effect of the investment decision variable is to increase link capacity, then we

may write

k

£,
= —J
Dy(fy 25) =ty £, [l * r<cj Y zj> ] (2)

where the investment variable zj is measured in units of capacity. This is

the type of function which Steenbrink [10, 11] used in his study. By computing
partial derivatives, the reader can show that Dj(',-) is a convex function
whenever k > 0, r > 0, tj > 0, and cj > 0.

In some network design applications, it may be desirable to have the
investment affect the free-flow travel time on a link, rather than the link
capacity. And in other applications, it may be desirable to have the invest-
ment modify both the free-flow travel time and capacity parameters simultaneously.
For example, the effect of adding lanes to a road link will be to increase the
capacity; but the additional lanes may also allow the speed limit to increase,
which affects the free-flow travel time. Unfortunately, it does mot appear to
be possible*, when using a differentiable travel time curve in the form (1), to
allow the investment decision to affect only the free-flow travel time or both
the free-flow travel time and capacity simultaneously; however this is possible
when using a piecewise linear approximation for the travel time curve, as discussed

next.

*Suppose, for example, that (1) were modified by replacing t, with t.-z,,
in order to have the investment decrease the free-flow travel time.- Then
D.(f., z,) would not have the convexity that is required by the decomposition
aﬂpraachjdiscussed in Section 4.3.1.
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4.2.2 PIECEWISE LINEAR TRAVEL TIME FUNCTION
The Northwestern group [5] assumed that Tj(fj) , the
travel time as a function of flow, could be approximated with a piecewise linear

function with Mj breakpoints. Define the components x? such that

m = M.j
T.(f.) = MIN o, (3.1)
J ] T ] J
3 m= 1
subject to
m = Mj
m
f. = . .2
; z S (3.2)
m=1
and
m m
0 f_xj j_Kj 5 (m = 1, ...,Mj), (3.3)

m . . : g . .
where Kj are the segment lengths in the piecewise linear approximation and C?
are the slopes of the linear curves in the approximation. If the original

travel time curve is convex, which is the case for a curve in the form (1)

with nonnegative values of k and r, then C? j_C? < ...f_C?j. The piecewise

j =
linear approximation used in the Northwestern study had two breakpoints
(Mj = 2).

To incorporate investment into the analysis, the Northwestern group

next assumed that the only effect of investment on a link is to shift the

locations of the breakpoints. Let zj be the total capacity added to link j
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(measured in units of capacity), and let F? be the proportion that is assigned
th . . . . s
to the m b increment. This means that the total travel time on link j as a

function of flow fj and investment zj can be represented as

m = Mj
m _m
D.(f,, z.) = C, x, 4.1
J(J, J) MIII;II Z i %50 4.1
X,
J m=1
subject to
m = Mj
m
f. = . 4.2
j Xy 4.2)
m=1
and
m m m
0<x.< K, +F, =z, m=1, ...,M.) . 4.3
Sxy 2Ky P ( s ,J) @G .3)

By using an argument similar to that given in Section 4,6, it can be shown that
Dj(-,') is a convex function.

The appropriate values for the multipliers F? are determined by the
lengths K?. We will illustrate this procedure by considering the following
example. Suppose that the original travel time curve is in the form (1) and
that the breakpoints occur at flow values equal to al cj, a2 cj, cees Oy CL

where c. is the link capacity parameter and al< az < +.. <0y. Thus

c. form=1, ...,M,

where oy = 0. If we take breakpoint values on the curve in the piecewise
linear approximation, then the slopes C? are independent of cj and are multiples

of the free-flow travel time tj:
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) [ o, L+ o ¥ -a, 4 f1ex (am_l)k”
P & -a ’

m-1

form =1, ...,M. The proper value for the multipliers F? are given by

because if we were to define new breakpoints K? = K? + F? z,, then the break-

points K? and slopes C? would provide the correct piecewise linear approxi-

mation to the travel time curve after cj is replaced with cj + zj.
In the foregoing Northwestern formulation, the effect of the investment
decision is to change the breakpoints, but not the slopes of the piecewise

linear approximation. If the original travel time curve were in the form 1),

then this would correspond to increasing the capacity parameter cj, but not the

free-flow travel time ty- If it were desired to affect either or both the capacity
and free-flow travel time, then the following could be done. Suppose that at some

maximum investment it is desired to have both a new higher capacity C; and a
new lower free-flow travel time t;. As before, the first step is to represent
the current travel time function (1), incorporating the current values for tj

and cj, with segments having positive lengths Kj . The next step is to add addi-
tional segments whose slopes correspond to the new lower free-flow travel time
t;, but having initial lengths K? = 0. These additional segments would have
positive values for F?, while the segments corresponding to the current tj would
have negative values for F?. The constraint (4.3) then guarantees that the

)
segments corresponding to the new tj will expand, while the segments corres-

. R m
ponding to the current t, will contract. The multipliers Fj are chosen so that
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the segments corresponding to the current tj just vanish at the maximum in-
vestment, while the segments corresponding to the new t; have expanded to be

the proper multiples of the new capacity c;. Thus, with this approach, the
piecewise linear representation of the travel time curve can handle modifications
in either or both the free-flow travel time and link capacity.

LeBlanc and Morlok [16] tested the accuracy of the piecewise linear
approximation in a traffic assignment problem. They studied a 24 node, 76 link
network that was used to model the city of Sioux Falls, South Dakota: when
using systems optimal traffic assignment with the non-linear FHWA travel time
curve (see Section 4.2.1), there were a total of 48,100 vehicle hours and
668,400 vehicle miles/day; and when using systems optimal assignment with the
piecewise linear approximation (Mj = 2), there were a total of 48,700 vehicle
hours and 641,900 vehicle miles/day.

4.2.3 QUADRATIC TRAVEL TIME FUNCTION

This subsection will review the results that Dafermos [3] obtained

for a particular class of cost functions. She assumed that the total

travel time on link j as a function of the flow fj and investment zj could

be represented as
D.(f,, 2.) = A,(z,) £2 + B, (2.) f.,
J 1] J 11 J J 1] J

where Aj(-) and Bj(-) are functions which incorporate the effect of investment
into the travel time relationship. Thus, the total travel time is a quadratic

function of link flow for a particular value of zj.

Investments which improve the interaction between vehicles on a road
are reflected in the function Aj(') and correspond to increasing the capacity

parameter in the formulas given in Sections 4.2.1 and 4.2.2; examples of such
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improvements are widening a road, adding lanes, improving visibility, etc.
Investments which reduce the free-flow travel time are reflected in the function
Bj('); examples of these improvements are shortening the distarne, eliminating
ramps, straightening curves, etc.

Assuming that Aj(zj) # 0 for zj > 0, Dafermos showed the the following
are necessary and sufficient conditions for Dj(fj, zj) to be convex over the

region fj > 0 and zj > 0:

a B.(z.) is independent of 2z}
) J( J) p i
b) A.(z,) >0 for z, > 0;
33 J
) 1 .
c) —_— is concave for z., > O.
Aj(zj) h|

Note that condition a) implies that Bj is constant, so that it is not possible
to include improvements that reduce the free-flow travel time; this was also
the case for the FHWA curve in Section 4.2.1. Note also that conditions b)
and c¢) imply that Aj(zj) is convex for zj.1 0.

Additional restrictions on Aj(') can also be stated. Because investment
will improve link conditions, Dj(fj, zj) should be a decreasing function of zj

for fixed fj; thus

d
d £ A (z) <0 forz > O.
) dzj J( J) h|

- . lim . . .
Note that conditions b) and d) imply that zj¢ © Aj(zj) exists and is nonnegative.
It is reasonable to assume that when an "infinite" amount of investment is applied

to a link (so that the width of the 1ink becomes "infinite"), the interaction

between vehicles disappears. This corresponds to having

1im
e A.(z.) =0,
) J( J)

z, > ™
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Dafermos showed that if Yﬁ, lj and aj were positive constants, then

would satisfy conditions b), d) and e). In order for condition ¢) to be

satisfied also, it must be true that 0 f_yj < 1. 1In conclusion, a convex

function Dj(',') satisfying the foregoing conditions is given by

L, Y,
D.(f,, z,) = a, [——QL——] Te2 4 n £, (5)
I R 3 . 3 33

where aj >0, lj >0, and O E-Yj < 1. Because Bj is independent of zj, we may
interpret (5) as representing the case in which the effect of investment is to

change only the link capacity, not the free-flow travel time.

4.3 INVESTING TO MINIMIZE USERS' AND INVESTMENT COSTS

This section will analyze the following problem: determine the

optimal network design in order to minimize the sum of users' and investment
costs, subject to systems optimal traffic assignment. A budget constraint
will not be incorporated into the formulation until Section 4.4,
L.3.1 GENERAL CASE

In Section 4.2, we defined Dj(fj’ zj) as being the total
travel time on link j as a function of link flow fj and the investment
decision zj on the link. Let Gj(zj) be the investment cost (measured in dollars)

associated with the investment decision zj. Thus the total social transporta-

tion cost (user travel cost plus investment costs) for link j 1is equal to

D.{(f., z,) + A G,(z.),
J( J ZJ) J(ZJ)

where A expresses the conversion between investment dollars and travel time.
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The number of distinguishable flow commodities in this problem is
equal to the number of origin nodes or to the number of destination nodes,
depending upon how it is formulated. Suppose that commodities are distin-
guished by origin node. Let fg be the total flow on link j that originates
from node r.

We now state the network design problem: determine the investment
decisions zj and flows f§ in order to minimize the total social transporta-

tion costs

MINIMIZE E D . f . zZ. + A G.(z. (6)
( ’ J) J( J)’
‘|€A

subject to the conservation of flow equations defined for each node i and

origin r

Z £F —Z £5 =hY  (deN; r =1, ...,R), ¢))
3 : i i
1

total flow in each link being equal to the sum of the flows from the sources
r =R
£, = z f§ (jeA), (8)
r=1
upper and lower bounds on the maximum improvement possible
L, <z, <P, (jeA), 9

and non-negativity restrictions
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£,20 , (jeA; r = 1, ...,R), (10)
where
A = set of links in the network
Dj(fj, zj) = total travel time on link j as a function of the
flow fj and investment decision zj
f§ = flow on link j from origin r
fj = total flow on link j
Gj(zj) = cost for making decision zj for link j
—Ori if i 1is a destination node
h 0_. if i=r
i . rj
J
0 Otherwise

Lj = minimum value for the investment decision for link j

N = set of nodes in the network

Oij = number of trips from node i to node j

Pj = maximum value for the investment decision for link j
R = number of origin nodes

Vi = set of links terminating at node i

Wi = set of links originating at node i

zj = investment decision for 1link j
A = expresses the conversion between investment dollars and travel
time,
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Any continuous convex functions Dj(-,-) and Gj(-) can be used. We assume
that A is nonnegative. For a given value of zj, the objective function (6) mini-
mizes the total travel time subject to the conservation of flow conditions; thus,
the traffic is assigned according to the systems optimal criterion (see Section
2.2). The upper bound Pj on investment could be set by either a physical,
technical, environmental, or financial constraint. As we will show in Section
5, the lower bound Lj is needed for multi-stage applications. If Lj = Pj =0,
then no improvement is possible on link j.

Next, we will present the decomposition procedure devised by Steenbrink

[10, 11]. Let

Ij(fj) = the optimal investment decision for link j
as a function of 1link flow fj’
Hj(fj) = the minimum travel and investment costs for

link j as a function of the link flow fj.

The approach begins by solving a separate subproblem for each link,

which determines the functions Ij(-) and Hj(-). The function Hj(-) satisfies:
H,(f.,) = MINIMUM D.(f,, =z, + X G,(z, 11
(£ = MNpam [0y, 2 NERM (11)

subject to

L, <z, <P.. (12)

The function Ij(fj) is defined to be the value of zj at which Hj(fj) attains
its minimum. It might be thought that it is necessary to solve (11) and (1]) for
each value of fj in order to construct the functions Hj(-) and Ij(-); however,

as we will show in Sections 4.3.2 and 4.3.3, in many cases it is possible to
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derive closed-form expressions for Hj(-) and Ij(') in terms of the input
parameters.,

The solutions of the subproblems (11) and (12) form the objective func-
tion for the master problem, and the purpose of the master problem is to

compute the total flow on each link. Thus this problem becomes: determine

f. and fF to
J J

MINIMIZE Z H. (f.) (13)
jea J 4

subject to

r r .
Z £ - Z fj=h§ (ieN; r = 1, ...,R), (14)

jewy jeVi
r = R
r
£5 = f, jeA), 15
:E: 3 ; (jed) (15)
r =1
f§_>_0 (JeA; T = 1, ...,R). (16)

We will show in Section 4.6 that Hj(') will be convex whenever Dj(-,-)
and Gj(-) are continuous convex functions. If Hj(') is convex, then (13) - (16)
is equivalent to the traffic assignment problem, and thus it can be solved by one
of the approaches discussed in Section 2. It can be shown that the combination
of solving the subproblems (11) and (12) and the master problems (13) to (16) is
equivalent to solving the original problem,(6) to (10). Once the optimal value
fj is determined for the jth link, then the optimal investment for that link is

i by I.(f.).
given by J( J)
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The success of this particular approach of solving the network design
problem is dependent upon how easily the functions Hj(-) and Ij(-) can be
obtained for each link, and upon whether Hj(') is a convex function. Note
that the traffic assignment algorithms discussed in Section 2 can be modifiqd
to handle non-differentiable objective functions, although they are best
suited to work with differentiable functions. However, all of these traffic
assignment algorithms require Hj(') to be convex in order to emsure that a
global optimal solution will be obtained. We have examined the following

cases:

a) FHWA Curve with Change in Link Capacity. The non-linear differentiable

function (1) is used to represent the total travel time on a link as a function of
the capacity and free-flow travel time on that link. If we assume that the only
effect of the investment decision is to change the link capacity, then Dj(-,-)

is given by (2). If the investment cost Gj(-) is a convex function, then Hj(-)

is convex. Furthermore, if Gj(-) is linear, then Hj(o) is differentiable. In
Section 4.3.2, we will derive the formulas for Hj(-) and Ij(v) for the case in

which Gj(-) is linear.

b) Piecewise Linear Travel Time Function with Changes in Either or

Both Link Capacity and Free-Flow Travel Time. The piecewise linear function (3)

is used to represent the total travel time on a link. If we assume that the
only effect of investment is to shift the locations of the breakpoints, then
Dj(-,-) is given by (4). 1If Gj(') is convex, then Hj(-) will be convex. In

Section 4.3.3, we will give the formulas for Hj(-) and Ij(-) for the case in

which there are two segments in the approximation (Mj = 2) and Gj(-) is

linear; however, Hj(~) will not be differentiable in this case. If the
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original travel time curve is in the form (1), then we showed in Section 4.2.2
how the piecewise linear representation can be used to model changes made

simultaneously in link capacity and free-flow travel time.

c) Quadratic Travel Time Curve with Change in Link Capacity. The

total travel time on a link is represented as a quadratic function of the flow

on that link. If we assume that the only effect of investment is to change

link capacity, then (5) can be used for Dj(n,-). 1f Gj(o) is convex, then Hj(-)

will be convex. The analysis for this case is similar to that given in Section

4.3.2 and therefore is omitted.

4.3.2 DIFFERENTTABLE TRAVEL TIME FUNCTION WITH CHANGE IN LINK CAPACITY

Consider the case in which the travel time curve is in the

form (1) and that the only effect of the investment decision is to change the

capacity parameter cj. Section 4.2.1 showed that the total travel time on link

j as a function of the flow fj and investment decision zj is given by
£ k
) .
Dj(fj, zj) tj fj [1 +r <%;ﬁ%—;;> ] .

where the variable zj is measured in units of capacity.

For this case, subproblem (11) - (12) becomes:

£,
+ z

k
_ MINIMUM l
H(£,) = : e, £, [1 +r <—-1——> ]+ A Gj(zj)] ,an

z, Cc
3 | J 3

subject to
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The function Ij(fj) is defined as the value of zj at which Hj(fj) attains its
minimum. In Section 4.6 we will show that if the investment cost Gj(-) is a
convex function, then Hj(-) will be convex also.

Next, we will derive explicit formulas for Hj(-) and Ij(') for the case

of a linear investment cost function: Gj(z) = gj zj. Define

f.
=t. f + . T — ] +Ag. z,.
hj(fj’ Zj) tJ R [l r <cj + 2 > 85 2

If the optimal investment decision zj occurs at an interior point, then it will

satisfy the equation

?Ei k r tj (fj)k+l
Ty s (c. +z )kt +)‘gj=0
J i %

The parameters gj, k, r, and tj are fixed for any given link j; thus to simplify

notation, define

1
N k + 1
$.(\) = |21 —
j k r tj

It follows that the solutions to the subproblem (17) ~ (18) are the following:

fLJ. 0< £y < (ey+Ly b5
LED = o by e £ - e (5 + L) 0500 < £; < ey + Py 6
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k
f i f.
t, £, |1+ [—=L—) |+ g, L, .
5 £ r<; T L.> ] AgJ LJ 0 j_fJ j_(cj + Lj) ¢j(A)

| k| hi
H.(f,) = t, f. |1+ (k+ 1) r ¢.(A)k}- Ag, c, (c, + L)Y ¢.(0) < £,
33 it b} i3 3 j IV =
fj < (cj + Pj) 4’3-(")
£, k
\tj fj [1 +r c—j—iTj ]+ Ag; P fj > (cj + Pj) ¢j(>\)

By computing the derivative, the reader can verify that dH.j/dfj is continuous and
nondecreasing, which implies that Hj(-) is convex and differentiable. It is
possible to extend these formulas for Hj(-) and Ij(~) to handle a piecewise
linear convex investment cost function Gj(-), in which case Hj(-) will still be
convex, but no longer differentiable.

The next step is to solve the master problem (13) - (16) using the fore-
going expression for Hj(-). Because Hj(-) is convex, this master problem can
be solved by one of the traffic assignment algorithms discussed in Section 2.

h

Once the optimal flow fj is determined for the jt link, the optimal investment

for that link is Ij(fj).

L4L.3.3 PIECEWISE LINEAR TRAVEL TIME FUNCTION WITH CHANGE IN EITHER OR BOTH
LINK CAPACITY AND FREE-FLOW TRAVEL TIME

Next consider the case in which the piecewise linear approxi-

mation (3) is used for the travel time curve and the only effect of invest-
ment is to shift the locations of the breakpoints. Section 4.2.2 showed that

the total travel time on link j as a function of the flow fj and investment
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decision zj (measured in units of capacity) is given by

m = Mj
D.(f,, z,) = MIN z ¢t X7
J ] J X0 J ]
J m=1

subject to

m = M,
J
£, = :E: X
J J
m=1
and
m m m
0<x, <K, + F., =z m=1, ...,M,
— J . J J J ( » H] J)’

when Mj is the number of breakpoints for link 3 C? are the slopes of the linear

curves, K? are the initial segment lengths, and F? is the proportion of the added
. . th |

capacity assigned to the m lncrement.

For this case, subproblem (11) and (12) become:

H(£,) = MINTHUM [Z ‘f‘ x LRI IV I (19)

subject to

<y
Z & o= f (20)
J ]

m= 1
n
x?iK? Tz, m =1, ...,M), (21)
L. <z, <P, 22
3= =y (22)
m
2 >0, X5 >0 , (m =1, ...,Mj). (23)
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The function Ij(fj) is defined to be the value of zj at which Hj(fj) attains
its minimum. It can be shown that if Gj(-) is convex, then Hj(:) is convex;
however, Ij(-) need not be convex. Refer to Section 4.6 for the proof of the
cmmﬂWof%(m

The role of the subproblems is to construct the appropriate objective
function for the master problem. If Gj(-) is piecewise linear, then both
Hj(-) and Ij(-) are piecewise linear, and furthermore the breakpoints and slopes
for these functions can be determined directly in terms of the input parameters.
We will illustrate this procedure for the following problem: two linear segments
for the travel time function, Mj = 2; and linear investment cost function,
Gj(zj) = gj zj. We observe that because of the convexity of the travel time

2

function, Cj_i Cj. For the case

=

Ag,
ol o421 < (2
3 Ft 3
hi

it can be shown that the following formulas for Hj(~) and Ij(-) give the solution

to the subproblems (19) to (23):

1
ﬂ:. f, + Ag, L, for f, <K% + L,
| h| 373 i—=3 i 73
1
(£, - K.) arg.
1 J I S |
c; £, + kb et oL o<f, kY o+ B o
i3 Ft 3 i1 3 =73 33
k|
1 1 1 1 1 1 2 1 2
H.(f.)=<C. (XK. + F. P)) K, + F, P, < f,<K. +K° + (F, +F) P
373 k| h| 33 N j o3 i3 k| (j j)j
+ ¢ (e, -kE-Fr )
3T i3
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and

L, for £, < K% + Fl L.
h| i—] i3
f.—K%
I.(£.) = 1 KD +Fl L, <f <kt +Fl p
3] FJ. h| ] h| h| h|
P 1 1 1 1 2
+F, P, <f <K, +K,+ (F, +F) p..
J KJ h| ] h| (J J)
And for the case
A B.
Cl+—ll> C?,
3 F, 1
J
it can be shown that
(;% f. + xg, L, for £, < KX + rt L,
i ] 3] =3 i 73
c% (K; +F, L,) +\g, L, f. <K +K,+(F],“+F2)L,
| 3 J J- A hi
+C; (f, -K, - F, L. £. > K, + 7l
3 J) F F_‘] LJ’
1 2
£, - K, - K
H (f) = i TN K
R R Nl e B £k @ ) e,
I\ 3 gl g2 i= 3 3 3 it
N
f.>K:.L +K?+(F% +F?)L,
1 2 i—"3 h| ] 73
of 2 2 fi =K -K
+ ci kS + F°
ol 4 g2
]
f.—K].'—K;.Z
R e M P
F].'+F? J
J h|
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and

(L. for f, < K% + K% + (F% + F?) L,
J J— 1 J J J J
1 2
f, - K. =K,
I(f)=<J lJ ZJ fiKl+K2+(Fl +F?)P.
3455 F& + FJ J J J 3 J J
1 2 1 2
‘ f.> K. + K. + (F, + F
\ iT g vy Y ED L

The next step is to solve the master problem (13) - (16), using the above
expression for Hj(-), in order to determine the optimal flow values fj. Because
Hj(‘) is convex, problem (13) - (16) is equivalent to the traffic assignment
problem with a non-differentiable objective function, and thus it can be solved
by one of the approaches discussed in Section 2. The optimal investment on link
j is then Ij(fj). If the original travel time curve is in the form (1), then
we showed in Section 4.2.2 how the piecewise linear representation can be used to
model changes made in either or both link capacity and free-flow travel time on
existing links. It is also possible to handle the introduction of entirely new

links by specifying their initial capacity as being zero.

L.} INVESTING TO MINIMIZE USERS' COST SUBJECT TO BUDGET CONSTRAINT

The network design formulation in Section 4.3 minimized travel plus

investment costs, but without a budget restriction. In contrast, the objective
of the model in this section is to minimize users' travel costs subject to a bud-
get constraint. Thus the formulation becomes: determine the investment decisions

zj and flows f§ in order to minimize total travel costs

MINIMIZE Z D.(f,, z.), (24)
fo 2 R
jeA

subject to the conservation of flow equations defined for each node i and origin r

z ££ - Z £ ht (ieN; r = 1, ...,R), (25)
| ] 1

JEWi J€Vi

total flow on each link being equal to the sum of the flows from the sources
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£, = Z £: g (jea), (26)

L, <z, <P jeA 2n
322 5P (jea),
nonnegatively restrictions
£5 >0 (jeA; r = 1, ...,R), (28)
J

and total investment costs limited by the available budget B

Z Gj (zj) < B, (29)

jeA

where the input parameters are defined in Section 4.3.1.

Any continuous convex functions Dj(-,-) and Gj(-) can be used. For
example, if Dj(-,-) is specified by the piecewise linear approximation (4)
and Gj(-) is linear, then the model (24) to (29) is basically the one formulated
by the Northwestern group [5]. 1If Dj(',-) is given by (5) and Gj(-) is linear,
then (24) -~ (29) is basically the model proposed by Dafermos [3].

Our approach for solving the design problem (24) - (29) is illustrated in
Figure 4.1 and involves using a Lagrange multiplier technique to handle the bud-
get constraint (29). As Everett [17] has shown, this approach will yield a good
approximate answer. Implicit in Everett's approach is the need to update trial
values of the Lagrange multipliers until the budget constraint is approximately
satisfied. Brooks and Geoffrion [18] show how to do this systematically with

linear programming. As seen in Zangwill [19], this can be thought of as the
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USING Ao AS INITIAL
LAGRANGE MULTIPLIER,
INCLUDE BUDGET CON-
STRAINT IN OBJECTIVE
FUNCTION

L ;
SOLVE A SUB-PROBLEM
FOR EACH LINK TO
DETERMINE OPTIMAL
LINK INVESTMENT AS
A FUNCTION OF LINK
FLOW

CONSTRUCT OBJECTIVE
FUNCTION FOR
EQUIVALENT TRAFFIC
ASSIGNMENT PROBLEM
FROM SUB-PROBLEM
SOLUTIONS

'

SOLVE TRAFFIC
ASSIGNMENT PROBLEM

COMPUTE TOTAL

AMOUNT INVESTED.

IS THIS SUFFICIENTLY

CLOSE TO ACTUAL
BUDGET?

USING BINARY SEARCH,
DETERMINE NEW
LAGRANGE MULTIPLIER

/

YES

STOP

NO

FIGURE 4.1--Solution of Network Design Model with
Budget Constraint Using Decomposition
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Dantzig-Wolfe decomposition method [12], [13]. However, we suggest using the
method of Fox and Landi [20], which is to employ a binary sequential search
procedure, sometimes called Bolzano's method (see Wilde and Beightler [21]). The
problem of finding the appropriate Lagrange multiplier is equivalent to finding
the zero-crossing of a monotone function, although in our problem this function
may be discontinuous; thus there may be no multiplier which yields a total
investment equal to the specified budget. A sequential search is a procedure that
evaluates the monotone function at a succession of points which are determined by
the outcomes of the preceding evaluations; at each step, the interval of uncer-
tainty is reduced, and the process either repeats or terminates. A minimax se-
quential search is a scheme that minimizes the maximum length of the interval
remaining after a fixed number of steps. The binary method proceeds by successive-
ly halving the interval of uncertainty. Fox and Landi [20] showed that the binary
method was the unique minimax sequential search procedure for finding the zero-
crossing of a monotone function known to lie in a given interval.

Next, we will outline this Lagrange multiplier approach in more detail.
Let w represent the vector (fg, zj) of decision variables, S be the set of
values for w satisfying the constraints (25) to (28), Q(w) represent the ob-
jective function (24), and R(w) < B represent the budget constraint (29). Thus

(24) to (29) can be rewritten as:

MINIMIZE Q(w), subject to R(w) < B. (30)
WweS

Using Everett's method [17], problem (30) can be (approximately) solved by

finding a multiplier X and the corresponding solution w(A) to

MINIMIZE [Q(w) + AR(w)]. (31)
wes
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It can be shown that R[w(})] is monotone with respect to ), although possibly
discontinuous. The binary method proceeds by generating a series of values for
A and solving (31) for each value, until the total investment R[w(a)] is
approximately equal to the available budget B. Because R[W(A)] may be dis-
continuous, there may be no multiplier A for which R[w(A)] = B; thus several
criteria should be used for stopping the search procedure: whenever R[w(l)]
is sufficiently close to B; or whenever the interval of uncertainty for A is suff-
ciently small*.

What makes this approach efficient is that problem (31) is identical to
the model (6) - (10) formulated in Section 4.3.1. Thus, the decomposition
approach discussed in Section 4.3.1 shows that problem (31) can be solved by
using a traffic assignment algorithm, assuming that the objective function for
the master problem has the appropriate convexity. In other words, the network
design model with budget constraint can be solved by solving a sequence of

traffic assignment problems, one for each value of the multiplier.
k.5 CONCLUSION
The network design approach developed in this section has the following

characteristics:

a) Continuous Investment Decision Variables. The algorithm determines

the optimal solution based upon continous decision variables. 1If, however, a
discrete solution is needed for a particular application, then one approach is
to simply use a discrete solution that is close to the optimal continuous

solution.

*
However, by taking the convex combination of two solutions w(A) whose

investments R[w(A)] straddle the desired budget B, it is always possible to
obtain a feasible (but not necessarily optimal) investment schedule whose total
cost is equal to B.
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b) Systems Optimal Traffic Assignment. The formulation is based

upon systems optimal traffic assignment, which is the preferred assignment

in rail or mass transit applications; but user equilibrium assignment would be
preferred in highway applications. Section 4.1 gave bounds on the user equili-
brium design problem using only the solution to the systems optimal design
problem; if these bounds were close, then this would justify using the net-
work design based on systems optimal assigmment in an application in which user
equilibrium assignment was preferred.

c) Travel Time As a Function of Flow and Investment. The model

assumes that Dj(fj, zj), which is the total travel time on link j as a function
of the link flow fj and investment decision zj for that link, is a continuous
convex function. This includes as special cases the non-linear differen-
tiable curve, similar to the FHWA travel time function, used by Steenbrink

[10, 11]; the piecewise linear curve used by the Northwestern group [5]; and
the quadratic curve used by Dafermos [3].

d) Investment Cost Function. The model assumes that Gj(zj)’ which

is the cost for making investment zj on link j, is a continuous convex function.

e) Investment Alternatives. If the only effect of investment is to

increase the capacity on existing links, then Section 4.2.1 showed how this
could be implemented with a differentiable travel time curve; and if the effect
of investment is to change either or both the free-flow travel time and capacity
on existing links, then we showed in Section 4.2.2 how this could be done with

a piecewise linear travel time curve. The piecewise linear approach can also
handle the introduction of entirely new links by specifying their initial
capacity as being zero.

f) Solution Algorithm. For the case in which there is no budget

constraint but the investment cost is included in the objective function,
Section 4.3 showed how the solution to the network design problem could be
obtained by solving a traffic assignment problem. For the case in which a

68



budget constraint is used, then Section 4.4 gave a Lagrange multiplier technique
that obtains a solution to the design problem by solving a series of traffic

assignment problems, one for each value of the multiplier.

4.6 PROOF OF CONVEXITY OF Hj(')

In the decomposition technique discussed in Section L4.3.1, it was
necessary for the objective function of the master problem, denoted as Hj(-),
to be convex in order for the master problem to be solvable by a standard
traffic assignment algorithm. We have defined Dj(-,') to be the total travel
time on link j as a function of investment and flow on that link and have
defined Gj(-) to be the investment cost function for link j. We will show
in this Appendix that if Dj(-,v) and Gj(-) are both continuous convex functions,
then Hj(-) will be convex also. Note that formulas (2), (4), and (5) given for
Dj(',-) in Section 4.2 are convex.

The function Hj(') is defined as follows:

H,(f,) = MINIMUM (D.(f., z,) + A G, (z. (32
S (£ N ;£ 2)) J(J)] ) )
k|
subject to
L. <z, <P, ., (33)
J— 11— 1]

THEOREM: Assume that Dj(fj, zj) and Gj(zj) are continuous convex functions
defined for fj.i 0 and zj satisfying (33), that A 1is nonnegative, and that
L. and Pj are finite; then Hj(-) is convex.

J
PROOF: By the assumptions,

(£, z.) =D, (., z,) + AG.(z.
hy(fys 25) = Dy(fys 2zp) + 2 1829
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is a continuous convex function and is defined for fj > 0 and zj satisfying (33).
Suppose f;_i o, f; 20, and 0 < a < 1. Because a continuous function on a

. . . i . .
compact set attains its minimum value, choose zj satisfying (33) so that

i i i
H.(f)) = h (f,, z.). Thus
59 55 )+ Thu

1 2
GHj(fj) + (1 - a) Hj(fj)

) 11 ) 2 2

= an(e], 2D + A=) (e, 2D (34)

N 11 ) 2 2

2 oo, 2+ a-o @l 2 (35)
1 2

> oufeg] + -0 fj]. (36)

Equation (34) follows from the definition of z;, (35) follows from the convexity
of hj(',-), and (36) from the definition of Hj(-) given in (32) and (33). Thus

Hj(-) is convex, which completes the proof.
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5. OPTIMAL STAGING OF INVESTMENTS OVER TIME

5.1 INTRODUCTION

The network design model discussed in Section L only treated a
static problem: a network was to be examined for possible link additions or
modifications, without regard to the sequence or timing of the implementation
of these changes. However, it may be desirable to perform long-range planning
for a highway, mass transit, or rail network in which investments are to be
planned during each stage (or year) in a multi-stage horizon, subject to a
budget constraint on the total investment in each stage. The staging problem
is based on the observation that all network improvements would not contribute
equally towards the efficient functioning of the system: some should be added
early and some can be delayed. The analysis is complicated by the fact that the
user benefits derived from improvements on different links are interrelated in
a complex way through the network structure. There are two cases we will con—
sider:

a) The final configuration is not specified. 1In this case the staging

model would determine both the final configuration and the order in which the
investments would occur.

b) The final configuration is specified. In this case the staging

model would determine only the order in which the recommended network invest-—
ments should be constructed over the horizon.

Table 5.1 classifies some of the previous approaches for solving the
staging problem with respect to the following factors: whether the investment
variables are discrete or continuous, type of traffic assignment, and type of
objective function. The staging model formulated in this section can be viewed
as being a multi-stage version of the network design model formulated in Section
4; thus this staging model will include many of the characteristics of that

network design model, such as: continuous investment decision variables, systems
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TABLE 5.1

CLASSIFICATION OF STAGING MODELS

Investment Traffic Linlo%?;ve] Solution
Author Year Variable Assignment Time as Algorithm Objective
Function of
Flow
Bergendahl [1] 1969 Discrete Systems Piecewise First solves Minimum of dis-
Optimal Linear a traffic assign- |counted sum of
ment problem travel costs
using linear pro- [plus investments
gramming for each {over horizon plus
potential config- [salvage costs at
uration at each end of horizon
stage, and then
uses dynamic
programming to get
optimal solution
over time
Roberts [2] 1966 Discrete Systems Linear, with Decomposes the Lexicographic
Optimal an upper bound prablem into minimum of the
on maximum solving a single |vector of travel
‘flow network design costs for each
model for each stage, subject
stage, and each to a budget con-
of these is solved{straint for each
using integer stage
programming
Schimpeler- 1974 Discrete Systems Piecewise Uses a heuristic |Minimum of sum
Corradino Optimal’ Linear procedure which of total travel
Associates ignores the inter-|time in all
[3] dependency of the |stages, subject
links in the to a budget con-
network straint for each
stage
Proposed 1976 Continuous Systems Convex Decomposes the Lexicographic
Model ptimal problem into minimum of the

solving a single
network design
model for each
stage, and each
of these is
solved using a
traffic assign-

ment algorithm

vector of travel
costs for each
stage, subject
to a budget
constraint for
each stage
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optimal traffic assignment, travel time being a convex function of link flow
and investment, convex investment cost function, etc.

There are two basic types of objective functions that can be used in a
staging model. The objective of Bergendahl [1] and Schimpeler-Corradino
Associates [3]was to minimize the weighted sum of costs for each individual
stage. As we show in Section 5.2, the difficulty with this approach is that
it becomes intractable for large networks. An alternative objective function
can be specified by the application of the lexicographic ordering rule of vec-
tor analysis, and it is the approach used by the staging model formulated in
this section. This can be viewed as being a generalization of a method pro-
posed by Roberts [2]: our algorithm allows the order of importance of the
stages to be arbitrary, whereas in Roberts' algorithm the most weight was
placed upon the costs in the final stage, followed by the next to final stage,
then second to final stage, etc.

Section 5.2 discusses the differences between the weighted sum and
lexicographic objective functions, Section 5.3 gives a mathematical formula-
tion of the lexicographic staging model, and Section 5.4 presents the solution
algorithm. We will show that a T~stage staging problem can be decomposed
into T single-stage network design models if the final configuration is not
specified, and that it can be decomposed into T-1 single-stage network design
models if the final configuration is specified. As demonstrated in Section 4,
the network design model with budget constraint, continuous investment deci-
sion variables, and systems optimal assignment can be decomposed into a series
of traffic assignment problems using the Lagrange multiplier technique. We
are, therefore, able to decompose the staging model into a series of traffic

assignment problems.
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5.2 OBJECTIVE FUNCTIONS
This section compares the use of the weighted sum and lexicographic
objective functions when staging investments over a planning horizon.

Suppose that there are T stages in the horizon. Let

Ut = total user travel cost (or time) during the

tth stage (t = 1,...,T)

3

where Ut could refer to the costs summed over all days in the stage, or to
only the costs on the final day of the stage, or to only the costs associated
with the peak hours on the final day of the stage. For definiteness, we will
assume in this section that the staging model is to determine both the final
configuration at the end of the horizon and the order of construction during
the horizon.
5.2.1 WEIGHTED SUM OBJECTIVE

Perhaps the most straightforward objective would be to stage the invest-

ment decisions so as to

T
MINIMIZE Z w_ U,
t t

t=1

where wi are appropriate weights. For example, suppose that each stage
corresponded to one year and § is the annual discount rate. If we assume
that the demands and costs are stationary after the end of the horizon, then

w, = — 1 for t =1, ..., T-1,

a+6t

and

Yy = i lt= - (1)

(1 + 6) §(L+ 8) L



are the weights that would allow the present value of future travel costs
to be computed. Note that for realistic values of 8 and T (such as T=20
and &=.08), WT > wt for t < T. This corresponds to the observation that
the greatest benefits from investment will occur after construction is com-
pleted, not while construction is still in progress.

One approach that could be used for solving the staging model with a
weighted sum objective function is to formulate this problem as a linear pro-
gram. This can be done if the following assumptions are made*: a piecewise
linear approximation is used (see Section 4.2.2) to express the total link
travel time as a function of link flow, and the only effect of investment is
to shift the locations of the breakpoints in a linear manner; traffic is assigned
according to the systems optimal criterion; the investment decision variables
are continuous; and the investment cost function is linear. The number of con-

straints in this formulation is equal to

NRT+ (M+2) AT+ T,

where

= number of nodes
= number of origins
number of stages

= number of links

2 P> A ® =
I

= number of segments in piecewise linear
approximation for travel time function.

*These assumptions were made in the network design model that was for-
mulated and solved as a linear program by the Northwestern group [4]. The
staging model _(with a weighted sum objective) formulated by Schimpeler-Corradino
Associates [3] makes these same assumptions, except that they used discrete
investment decision variables and thus obtained a mixed integer linear program.
In Section 5.3 the staging model is formulated with more general assumptions
and a lexicographic objective, but it could provide a guide to the reader as to
how the linear programming version would be written.
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For even moderate values of N, R, T, A, and M, the above expression quickly
exceeds the capacity of commercially available linear programming codes.
For example, if N = 1000, R = 250, T = 4, A = 3000, and M = 2, then the linear
programming model would have over one million constraints. However, these
constraints do possess the staircase structure that is characteristic of
dynamic capacity expansion models. Thus, the nested decomposition approach
of Glassey [5] and Ho and Manne [6] could be employed. However, the value
of the nested decomposition procedure appears to be in reducing storage re-
quirements, rather than in reducing computer time (see specifically the test
problem results given in [5] and[6]). Thus, we conclude that in practice it
would not be feasible to use the weighted sum objective function when staging
investments over large networks. It is for this reason that Schimpeler-
Corradino Associates [3] suggested using heuristics when solving large pro-
blems with the weighted sum objective function.
5.2.2 LEXICOGRAPHIC OBJECTIVE

An alternative approach to the weighted sum objective
function is to employ the concept of lexicographic ordering of vectors (refer
to Dantzig [7, page 294]). A vector R is defined to be greater than zero
in the lexicographic sense (or lexico-positive and denoted R>-0), if it has
at least one non-zero component, the first of which is positive. If vectors
R and S have the same number of components, then R is defined to be greater
than S in the lexicographic sense (denoted R>S), if R - § is greater than
zero in the lexicographic sense (or R - S >~0). The term "lexicographic" is
used because this ordering is similar to the way one orders a set of words
in a dictionary.

Let

z=[

Ua(l)’ Ua(Z)’ ""Ua(T)
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be the vector of travel costs, where the function o(t), t=1, ...,T, defines
the order in which the components Ut are included in the vector Z. For ex-

ample, if o(l) = T, a(2) =T -1, ..., o(T) = 1, then

Or if o(1) = T, 0(2) =1, a(3) = 2, ..., o(T) = T - 1, then

Thus, the objective for the staging model is to find a vector Z that is the

lexico-minimum of all travel cost vectors (i.e., R>Z for all other possible

travel cost vectors R). We express this notationally as:

LEXICO-MINIMIZE [U X U

a(l a(2)’ """ Ua(T)].

With this ordering, the optimal investment schedule during stages t = 1, 2,

will

(2)

(3)

«»T

(1) minimize travel costs Uu(l) among all possible investment schedules

during horizon;

(2) minimize travel costs

(1);

Ua(z) among all investment schedules satisfying

(3) minimize travel costs Ua(3) among all investment schedules satisfying

(1) and (2);

.

(T) minimize travel costs Ua(T) among all investment schedules satisfying

conditions (1), (2), ..., (T - 1).
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In comparing the weighted sum and lexicographic objective functions,
it may be useful to think of the lexicographic objective as being a limiting
case of the weighted sum objective, where a very large weight is placed on
stage @(1l); a much smaller in comparison, but still large weight is placed

on stage @(2); etc. Notationally, this becomes:

> > >w

o) T Yaz)” T T T Yy
It is probably desirable to have ©(1) = T, so that the lexicographic objective
would guarantee that the best possible network design is obtained at the end
of the last stage in the planning horizon. This corresponds to the fact that
Vip > L for t < T, when realistic values are used for T and 6 in the ex-
pressions for W in (1).

The staging algorithm proposed by Roberts [2] determined the lexico-
graphic minimum of the vector of travel costs, but required this vector to
be in the form (2); i.e., the most weight was placed upon the last stage,
followed by next to last, second to last, etc. The staging algorithm that we
propose in this report generalizes Roberts' algorithm to allow the order func-
tion o (t) to be specified in any arbitrary way; this means that the terms Ut
can appear in any order in the travel éost vector. In particular, our algori-
thm will allow the travel cost vector to be in the form (3), which is perhaps
the most useful objective function in staging applications; i.e., the most
weight is placed upon the last stage, followed by the first stage, second
stage, etc. Note that this is the order of importance of the weights given
in (1). Thus, we may view the solution obtained from solving a staging pro-
blem with a lexicographic objective in the form (3) as being an approximation
to the solution that would have been obtained, if the staging problem were

solved using a weighted sum objective with the weights (1).
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5.3 FORMULATION

A mathematical description of the staging model with lexicographic
objective function is given in this section. Because this staging model can
be viewed as being a multi-stage version of the network design model discussed
in Section 4, it will include many of the characteristics of the network design
model: continuous investment decision variables, systems optimal traffic assign-
ment, travel time on a link is expressed as a convex function of link flow and
investment, convex investment cost function, etc. Also, the same basic nota-
tion that was developed in Section 4 will be used here, with the addition of
the subscript t to refer to the tth stage. With this modification, the

investment decision variables become:

Z., = total capacity added to link j during the first
J t stages.

Thus, =z, is the amount of capacity added to the jth link in the tth

it T %5, -1
stage.

Let Djt(fjt’ zjt) be the total travel time (or cost) in stage t on
link j as a function of the link flow fjt and investment decision z.. for
that link. Any continuous convex function can be used for Djt(',-), including
the following: the non-linear differentiable curve, similar to the FHWA
(U.S. Federal Highway Administration) travel time function, that was used in
the network design model formulated by Steenbrink [8, 9] (see Section 4.2.1);
the piecewise linear curve used in the network design model formulated by the
Northwestern group [4] (see Section 4.2.2), which includes as special cases the
functions used in the staging models formulated by Roberts [2] and Schimpeler-
Corradino Associates [3] ; and the quadratic curve used in the network design

model formulated by Dafermos [10] (see Section 4.2.3).
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Let Bt be the cumulative budget for the first t stages, and Gj(zjt)
be the investment cost for adding capacity zjt to the jth link. Any continu~-
ous convex function can be used for Gj(-). We require that the staging of in-
vestments over the planning horizon meet the following conditionms:

a) No construction should be removed after it has been installed;

this corresponds to requiring that

< Z
Zie S %5,t41 2

for all links j and stages t.
b) The total investment costs during the first t stages cannot

exceed the cumulative budget, or

z Gj (zjt) < By

jeA
where A is the set of links, and this inequality holds for each stage t.

We are now ready to formulate the staging model and will consider first
the case in which both the final configuration and the staging of investments
are to be chosen. Thus, the staging problem becomes: determine the decision
variables f? and z, in order to obtain the lexicographic minimum of the

jt jt

vector of travel costs

LEXICO-MINIMIZE Ua(l)’ Ua(z)’ ey Ua(T) s (4)
where the total travel costs for the tth stage is computed as
Ut = :E: Djt(fjt’ zjt) (t=1, ..., T), (5)



conservation of flow equations are defined for each node i, origin r, and

stage t

T r _.r
Z fjt z fjt_hit ’

‘e .
j Wi JEVi

(ieN; r=1, ...,R; t=1, ...,T),

total flow on link j is equal to the sum of flows from each source =

£, = Z f§t (jeA; t=1, ...,T),

total capacity added to link j during first ¢t stages cannot exceed the

capacity added during the first t+1 stages or the upper bound Pj

.. =< <P jEA; t= B
th_zj,t+1 and ZjT_j (jea; 1, ,T-1),

nonnegativity restrictions
£f..,>0, z. >0 (jeA; r=1, ...,R; t=1, P

and total investment costs during the first t stages cannot exceed the

available budget

Z Gj(zjc)i B, (t=1, ..., T),
jeA
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where

A = gset of links in the network
Bt = available budget during first t stages
Djt(fjt’ th)= total travel cost on.link j 1in stage t as a

function of the flow fjt and investment decision zjt

fjt = total flow on link j in stage t
f§t = flow on link j from origin r in stage t

Gj(z. )= investment cost for adding capacity zjt to link j

jt
(-0, if i 1is a destination node
rit
r
it L., O . if i =1r
] rjt
l'O otherwise
N = set of nodes in the network

= number of trips from node i to node j in stage t

ijt
Pj = maximum capacity that can be added to link j
R = number of origin nodes
T = number of stages

th

Ut = total travel costs for the t  stage
Vi = set of links terminating at node i
wi = set of links originating at node i

84



solve problems of this size using UMTA's computer package called the Transportation
Planning System (UTPS). Although this package uses a somewhat different approach
than that suggested by the decomposition scheme above (See the Frank-Wolfe algori-
thm in Nguyen [9] and for a detailed description see Ruiter [10]), the performance
of the algorithms is similar. A difficulty with this general methodology arises
when very large problems are considered, such as the planning model for the city

of Los Angeles ( lNI - 10,000; IAl = 30,000; R = 1,000). Here the sheer size

of the network permits only a very rough solution to be computed; whereas if

the network could in some way be reduced in size, a more accurate solution could

be obtained. The geographic decomposition approach presented in this report is

aimed at reducing to a more manageable size these very large networks.

6.3 GEOGRAPHIC DECOMPOSITION

Geographic decomposition is based on the observation that very large
networks are often only loosely connected; in other words, if a small set of links
are deleted from such a network, it will decompose into a series of disjoint

subnetworks. For example, if four links are deleted from the network in figure 6.1,

FIGURE 6.l--Disjoint Sub-Networks.

we could decompose the network into a series of unconnected sub-networks, as

in Figure 6.2.
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FIGURE 6.2--Unconnected Sub-Networks.

Geographic decomposition of the network for the problem of determining only
the shortest path between the origin-destination pairs has been previously pro-
posed by Hu [3], [4]; Lansdowne [5]; and Ramsburg and Aronoff [6]. Our approach
will be to apply this general concept directly to the traffic assignment problem
using Goeffrion's generalized Benders Decomposition [1].

Let S be the set of deleted links. With the removal of the links in S,
the network (N,A) can be decomposed into a series of disjoint subnetworks (NZ’AR)
L =1, ...,L, where

N = N1UN2(I. . .UNL

A= Af/AZU...UAﬁJS.

The first version of the algorithm can now be stated.
6.%3.1 GEOGRAPHIC DECOMPOSITION -- VERSION I
Step 0. (Initialization)

Determine an initial set of flows f§ for jeS; r=1, ..., R.

H
il
=]

let £, = £.  for jes.
i i

[a]
[
Jan

Set UBD * = "upper bound on solution value"
2M+'— @ "lower bound on solution value"
K # 0 TMindex for subproblem's dual feasible solutions"

K'* 0 "index for subproblem's dual unbounded solutions"
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Select convergence parameters e, and ¢,..

1 2
Step 1A (Find feasible solutions for the subproblems)

Solve the subproblems for £ =1,..,L; r =1,...,R:

2 _ + -
MINIMIZE Weus (r) Z(Vi + vi) ’
ieNl

. r + - . .
with respect to: fj’ Vis and Vs JEAE, 1sN2 5

subject to:

JEWi-S JEVi-S JeWiOS
(iENR‘) ’
viso0,v >0 (ieN)),
i~ L= L
f§ >0 (jeay)
IF WR >0 for a £ or r, then:
SUB (x) ny Lo . en:

Let K'« K" + 1.
uv-K'
Let?) ri

Go to Step 2.

(9)

(11)

(12)

be the optimal dual variables associated with constraint (10).

. 2 _ =T . .
Else, if wSUB(r) 0 for all % and r, then let fj be the optimal solution

obtained for the problem (9) to (12) and go to Step 1B.
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Step 1B. (Find optimal solutions for the subproblems)

Set K «K+ 1 .

Solve the traffic assignment problems for 2 =1,...,L:

MINIMIZE z%0% = J ¢, (x)dx (13)
SUB o 3 )
jeA

with respect to: f; and fj, jeAZ, r=1l, ...,R,

subject to:

r r = r _ =T _ =r
fj —z fj hy (z fj z fj) s 14)

Jedi—s JEVi—S Jewiﬂs JeViOS

4
r=R
£, = £F ;
] i Geap oo (15)
r=1
r
£,20, (JeAy; r = 1,...,R). (16)

Let Gii be the dual variables associated with constraints (14) on iteration K.
-K . . ce .

The u., can be interpreted as the cost of sending an additional vehicle from

origin r to node i, which may or may not be a destination.

. - -K . . A
Note: In order to determine the u_y uniquely, we will select one node i in

each set Nl so that

-K
ug = 0 for ¢ =1,...,L; r =1,...,R.

This corresponds to deleting a redundant constraint from (14) for % =1,...L
and r = 1,...,R.

Compute:

K _ K, 2
Zoup = Z5uB

o
1l
pa

=
]
=
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£,
Set UBD <« minlmum {uBD, Z J C. (x)dx}
SUB 0 j

jes
- -r =r
W - SUB z (z 3 Z £
r=1 ieN jew,ns jev,ns
> _
If ZM__ UBD El
or

LS (£.)] < e, where the link j= (a, b)
ra rb 33 -2 ’ ’

for all r = 1,...,R; €S
terminate the algorithm.

Go to Step 2.
Step 2 (Optimize the master)

Solve the generalized Bender's master problem:

MINIMIZE Z, z fJ C,()dx + x; (17)
je S

with respect to: f§, fj and xo, jeS, r=1, ...,R.

subject to:

2. mi- S - D -0 (18)

) JveQS JgiﬂS

(r = l,...,R; 2 ;l,...,L—l) 3
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xozFrK+z ZG‘;i (z f;,'- Z f§) , (19)

r=1  ieN JEWiOS jaVinS
(k = l,-..,K) ]
r=R
~k r T r
- =Y e, (20)
r=1 ieN jeWiOS jeViOS

f, = £, (3es) (21)

>0 (jeS, r = 1,...,R) (22)

and obtain Z, fj, and EJF (jeS, r = 1,...,R),

Go to Step lA.
6.3.2 DISCUSSION
Version I of.the geographic decomposition algotithm is based
on applying generalized Benders Decomposition directly to the formulation 1) - (4).
The major shortcoming of this approach is the very large master problem that must
be solved in Step 2. If the set S of deleted links contains
then for a problem with 1,000 origin nodes we could have a master problem with
over 100,000 variables. If the set S divided the network into 5 subnetworks,
then the number of constraints would be 4,100 + K + K', which of course grows
as the iteration counters K and K' increase. However, the situation is far

from hopeless, since the master problem possesses a great deal of structure.
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First, one should recognize that by far the largest number of constraints
(4,000) are generated by (18). However, these equations are just the network
conservation of flow constraints, which are separable for each distinct origin
node r, r = 1,...R.

Second, the equations (20) can be rewritten in a form that will also per-
mit them to be separated by origin node, namely,

—k r - r T '
Z Ari[hi—(z fj-z £D150 (20")

£ SE SE
iEN W 08 V.08

(r=1,...,R; k=1,...,K")

This alternative formulation is based on the observation that the subproblem
of Step 1A has already been separated by origin node r, and each such independent
subproblem can make its own feasibility test.

Finally, we observe that equations (19) and (21) can be entirely eliminated

if the objective function is rewritten in the form:

R
o TR
MINIMIZE ZM = :El 0 Cj(x)dx +
jeS
r=R
“E IR 6T 4w
MAXIMUM {M + u_, £, - f.)n. 17
MU { g« ; D (17")
r=1 i€N jeWinS jeVi/)S

This form of the objective funetion is jointly convex in fg, since the functions
over which the maximum is taken are convex. Since the only interaction that
remains between origin nodes occurs in the convex objective function, we can
now apply to the formulation (17'), (18), (20'), (22) the natural decomposition
procedure suggested by Murchland [8] and Nguyen [7] for the traffic assignment

problem to obtain:
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Step 2. (Revised)

Substep 2A.
Let f§, jeS, r = 1,...,R be the last obtained solution.
Let r = 1 .

Substep 2B.

Solve the master problem M(r) defined as:

£,
- E j
MINIMIZE 2\ f C,(dx +x;
— J g
jes

with respect to: f§, fj’ and xo, jes »

subject to:

2 [h?—(z f‘:’-z £y1=0 ,
iEN;L * 4 J N J
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where

and

o D I S T S

p#r ieN JEW 4N jev.0s

where i; ; jes , p=1,...,R 1is the current flow pattern.

Substep 2C

Revise the flow pattern f;, jeS, r = 1,...,R based on the last solution
of M(r). If the flow pattern is simulatenously optimal for all problems
M(r), r = 1,...,R, terminate. If r = R, set r = 1, else set r = r + 1.
Return to substep 2B.
At the completion of Step 2 (Revised), set ZM = Z}Kr) for the last r
solved, and obtain Ej and f§ for jeS, r =1,...,R.
Each master problem M(r) of Step 2B now has only 100 variables and
4 + K+ K' constraints. This size problem can be solved directly as a non-
linear programming problem; or if we choose to use a linear approximation for
the convex separable objective function, we can solve the problem as a linear
program. In either case, the size of the master problem no longer presents
a computational difficulty.
6.3.3 REMARKS
The subprogram in Step 1B can be solved by any algorithm for the
traffic assignment problem. If the natural decomposition of Nguyen and

Murchland, which we have just applied to the master problem is used,
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then the problem will decompose by commodities (origin nodes) into a set of
very simple convex cost transhipment problems.

The Bender's master problem of Step 2 is somewhat
unusual because of the addition of constraints (18). These equations were
included in the formulation to increase the probability that the subproblems
will be feasible. In effect, they simply state that for each commodity r
and subnetwork % , the sum of the trips generated at all origins must equal
the sum of the trips terminated at all destinations. This condition is nec-
essary for the subproblems to be feasible. (Note: Because of the deletion
of the arcs in the set S, there will be generated many pseudo origins and
destinations. These must be included in the calculations.) If these constraints
were omitted, then we would expect to find many cases in which the subproblems
would prove to be infeasible. Each such occurrence would generate a constraint
(20), and eventually we would force the master problem to a feasible solution.
However, this would be a very inefficient procedure, and as we argue below, the
inclusion of (18) will eliminate most of our infeasibility problems. Further-

more, we can show that (20) can generate (18) as follows. Notice that X‘Si will
k

only take on the values + 1 or 0. 1If X.ri = 1 for iENl and 0 for all other
i, and then at a later iteration Xhizl = -1 for iENl and 0 for all other i,

we will generate precisely one of the constraints in (18).

If every network (NR’ AE) is strongly connected, as
defined below, then the subproblems will never be infeasible, and the test
in Step 1A can be omitted. The computational advantage of this property rests
in the fact that we will not generate any constraints (20) for the master. The
mere fact that Step la can be omitted is relatively unimportant, since we must

still find a feasible starting solution for the subproblem (13) - (16).
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Let the set of nodes Nr_s N  be defined as all nodes in the network
(Nl’Al) for commodity r that are either:

(1) an original origin or destination node, i.e., h; # 0.

(2) a node at which an arc in the set S either originated or terminated.
If for each pair of nodes i and j in the set Nz there exists a directed

chain from i to j and a directed chain from j to i, and such chains exists

for all NZ, r =1,...,R, the network (Nl’ Az) will be called strongly connected.

(A directed chain is a set of links that connect i and j which are all oriented
in the same direction.)

In general, one would expect a transportation network to be strongly con-r
nected, since the set of nodes in NE are usually centers for demand zones, and
a route always exist between such centers. A simple condition that will
guarantee a strongly connected network is: if there exists an arc jeNz from

the node a to the node b, then there also exists an arc j'eNE from the node

b to the node a.

The second version of the geographic decomposition procedyre is obtained
by first applying the natural decomposition by commodity described earlier,
and then applying generalized Bender's decomposition to the problem of Step 2.
The conceptual advantage of this procedure is a greatly reduced size for the
master problem, and the processing of each commodity r 1in sequence and
independent of all other commodities.

6.3.4 GEOGRAPHIC DECOMPOSITION -- VERSION II
Step 1. (Initialization)
Determine an initial set of flows f§ for jeS; r = 1,...,R.
Also, select an initial set of flows f§ for jsNz; £=1,...,L; r =1,...,R.

r=R

Let f, = f? for jeS.
J J

r=1 105




Set UBD « « "upper

PR
Z ® "]ower

M

K <« 0 '"index
K' « 0 "index
r «1 "index

Select convergence

Step 1A. (Find feasible

bound on solution for current commodity"
bound on solution for current commodity"
for subproblem's dual feasible solutions'
for subproblem's dual unbounded solutions"
for the current commodity being optimized"
and €

1 2°
solutions for subproblem r )

parameters €

Solve the subproblem for % = 1,...,L:

MINIMIZE Wz

with respect to:

subject to:

SUB(r)

Z ERAIE 22
ieN * i
2
r + - .
fj, Vis and Vi JEAR, ieNl ’

- =r =r
z f§ - 2 ff+v - v, = hli. - (Z fj - z fj)’(24)
JEW. S jev.-s jew, Qs jev,as
i i
(iENSL) ’
+ - )
v, >0, v, >0 (ieN ) (25)
i — i— A
f§ >0 (JeAy) (26)
1f Wl >0 for any £, then
SUB(r) ’

Set K'« K' +1

1
Let X-ii be the optimal dual variables associated with constraint

(24).

Go to Step 2.
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L
. = I - .
Else, if wSUB(r) 0 for all , let fj’ JEAl be the optimal solution obtained

for the problem (23) - (26) and go to Step 1B.

Step 1B (Find an optimal solution for subproblem r)

Set K« K + 1

Solve the traffic assignment problems for g = 1,...,L:

K, % - |
MINIMIZE zSUB(r) Z/f)cj(x)dx s . 27)
JEAZ
with respect to: f§ and fj’ jsAl.

subject to:

T r_.r _ =T =T
Z fj'z fy=h (Z £ Z £ (28)

-E - . —_ = » g
j Wi S JEVi S JEWihS JEViHS
(iENl) b)
£ = fJ? + K:l;, (oA ) (29)
£ 20, (jea) (30)

where K; is a constant equal to Z f;.

i#r
Let ﬁfi be the dual variables associated with constraints (28) for subproblems
r on iteration K. In order to determine Gfi uniquely, it is sufficient that
for each Ny a node i be selected and

GKT =0 for 2= 1,...,L.
ri

Compute: =1,

K K,
ZsuB(r) = z zSUB(r)
2=1 107



Set UBD +« minimum {UBD, Z~ +z fJ c (x)dx}
= Jo

SUB(r)
jes
=K K _ -K T _ =r
H = Zgun o) z ir (Z 3 2 £5)
ieN szins JeVi[)S
7 > -

If Zy > UBD - e

or
& -3 - ED here th j = (a, b)
u_. b 5 5 < e, where e arc j = (a,

for all jeS, go to Step 3.

Go to Step 2.

Step 2, (Optimize the master)

Solve the generalized Bender's master problem:

Fl

MINIMIZE 7, = z jJ C,(x)dx + x, , (31)
o 0
jeS

with respect to: f§, fj and x5, jeS ,

subject to:

z [hi—(z fJ?- Z f?)]

ieN nginS ngins

1]
o
-

(32)

(% =1,...,L-1),

x > ﬁk + z :‘1;1 (z f§ - z fi) s (33)

ieN JEWinS _]EViI)S
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k
ZXri[hg—(z f:]]:—z ] <0, (34)
i

£, = fF + K] (jes) , (35)

>0 (jeS) (36)

and obtain EM’ fj and f§ for jes.
Go to Step 1A.
Step 3. (An optimal solution for subproblem r has been found)

Revise the current flow pattern F = (fl,...,fR) based on the last
solution for f§, jeA-S in Step 1B and f§, jeS in Step 2.

If the flow pattern F 1is simultaneously optimal for all subproblems
r in Step 1B, terminate.

If r =R, set r = 1l; else set r = r + 1.

UBD + =
7z “ - o
ZM

K« 0

K' « 0 .

Go to Step 1A,

6.3.5 DISCUSSION

There is a great similarity between versions I and IT of the
geographic decomposition procedure. In point of fact, the feasibility testing
procedures of Step 1A are identical; while if one were to apply the natural

decomposition by commodities to the subproblem of Step 1B in version I, one

109



would obtain the subproblem of Step 1B in version II. As we have shown in the
previous discussion, the application of this same natural decomposition pro-
vedure to the master problem of Step 2 in version I results in a master problem
that is identical to the master problem of Step 2 in version II. There are,
however, distinctions that do remain between the two versions of the algorithm.
First, version I can be viewed as being a more flexible procedure, since
the traffic assignment problem of Step 1B can be solved by methods other than
that recommended by Nguyen [7], such as a modified version of the UTPS
algorithm of UMTA, or the column generation procedure of Leventhal, Nemhauser,
and Trotter [11]. Since there is very little computational evidence as to
which of the many proposed algorithms is most efficient, this could prove to
be a very useful property of version I. (The only large scale computational
study known to the author is that of Nguyen [9], which proved inconclusive).

Second, version I also permits additiomal flexibility in the procedure
that can be used to solve the master problem of Step 2. Although we have
already shown that this problem can be totally decomposed by origin nodes,
this might not prove to be the most desirable procedure. For instance, in a
problem of more modest size, it may be possible to solve the master problem of
Step 2 directly, possibly taking into account only the network structure of
constraints (18), or the classical block angular structure with coupling
equations given by (19), (20) and (21).

As a counterbalance to the flexibility of version I, version II possesses
the very desirable property of working with only one commodity, defined by an
origin node, at a time. This should permit more efficient utilization of computer
memory and a reduced amount of information transfer between high speed memory
and auxiliary storage. Thus, a conclusion as to which of the two versions is

more efficient can only be ascertained by extensive empirical testing.
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6.4 SUB-AREA FOCUSING

Dial [2] has posed the following problem in connection with a net-
work design model for transportation planning. A small area of a large trans-~
portation network is extracted for intensive study. This area, often called
the window, will be examined for possible changes in the infrastructure of the
available transportation system. A key to an accurate model of these changes is
the reaction of vehicles outside of the window to changes within. Equally impor-
tant is the ability to expand the detail of the infrastructure within the win~
dow, while still maintaining a reasonable size for the overall problem. Current
methodology calls for the aggregation of the network outside of the window, both

to permit more detail within the window and to increase computational efficiency.

As an alternative to this procedure, we now Propose to use geographic decomposition,

The key to the use of geographic decomposition is the selection of the
set of areas for the cut set 5, so that the window becomes one of the subnet-
works (Nz, Ag. If the original optimal solution for the problem is available,
changes to only the window subnetwork can now be examined. Such changes will
take the fo'm of the addition or deletion of links. A first order approximation
to the effect of such changes can be computed by iterating between the window
subproblem in Step 1B and the master problem of Step 2 in version I of the
geographic decomposition algorithm. Effectively, this procedure uses the dual
solutions 651 of the surrounding subproblems to model the effect on the window
of shifts in trip routes within the surrounding areas. The approximation can
be made more precise by periodically resolving the subnetwork problems for
the surrounding areas in Step 1B of the algorithm, and thus generating new

dual solutions Gsi for these areas.
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Since the use of geographic decomposition involves only the repeated
solution of the window subproblem and the master problem, the procedure should
prove to be computationally efficient, and therefore, a reasonable alternative
to the use of aggregation. Moreover, geographic decomposition does have the
added benefit of the ability to easily refine its approximation, something that
is more difficult with an aggregation procedure.

6.5 CONCLUSION

In this sectiom, we have presented a decomposition procedure that
should prove useful in the solution of very large transportation planning
problems, and especially useful for the problem of sub-area focusing. In fact,
the proposed methodology should find many other applications in the area of
transportation modeling. For example, it requires only minor changes in our
original traffic assignment formulation to compute a system optimal solution
that obeys Wardrop's second principle, or to add the flexibility of elastic

trip demand functions.
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APPENDIX A
SELECTIVE REVIEW OF DECOMPOSITION METHODOLOGY

In this appendix, we will briefly review the decomposition methods
used in the body of this report. This is by no means meant to be an exhaus-
tive review. The interested reader who wishes to see a complete review of
decomposition methodology is referred to the excellent book by Lasdon [1].

In addition there are the reviews by Balinski [2], Gomory [3] and Geoffrion [4].
More recently, Lasdon [5] has prepared a technical report that updates the
previously mentioned text. Since the traffic assignment problem is a special
type of network flow problem, the reader may also be interested in examining
the survey by Bradley [6], which describes the state of the art in the solution
of large network flow problems.

Three basic decompgsition approaches are used in the algorithms presented
in this paper. The first we classify as a price directed decomposition. The
classic paper in this area is by Dantzig and Wolfe [7], which can be viewed as
an extension of the work of Ford and Fulkerson (8] on multicommodity network
flow problems. In a price directed decomposition, the subproblems communicate
with the master problem by the mechanism of prices and proposals. The master
problem sets prices, which in turn modify the objective function of the sub-
problems. The subproblem solutions are passed to the master problem which
will then recompute the prices and the process is repeated. The natural de-
composition used in the convex simplex method of Sectiomns 2 and 3 and in the
geographic decomposition of Section 6 are variants of this approach.

In Section 4 we introduce a decomposition scheme due to Steenmbrink [9],
(10]. This is probably most appropriately considered a form of price decomposi-
tion, although the analogy is far from perfect. In this procedure, a separate
optimization problem was solved for each link, which created an objective func-

tion for a traffic assignment problem. If we associate the entire group of

114



link optimization Problems with a master problem, then the Steenbrink decomposi-
tion falls into the mold of a price directed approach.

The second basic decomposition approach can be classified as resource
directed. 1In this approach, the master problem sends resources to the subproblem
and the subproblem in turn computes the marginal value of the resources it has
been allocated and returns this information to the master problem. Geoffrion's
generalized Bender's decomposition [11] is an example of such a procedure. We
have used this methodology in deriving the geographic decomposition of Section 6.

The third basic decomposition approach that we used was the optimization

principle of dynamic programming (Bellman [12], [13]). This was used in Section 5

to decouple the investment staging problem, so tﬂat the multi-stage problem could
be solved by solving a series of single stage problems.

In summary, we have used three basic decomposition approaches, price
directed, resource directed, and dynamic programming, in developing the analysis

presented in this report.
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APPENDIX B

REPORT OF INVENTIONS

The following features are regarded as innovations and improvements.,

1.

5.

Convex Generalized Upper Bounding to Solve the Traffic Assignment
Problem (see pages 23-2L), :

The Use of the Frank-Wolfe and Convex Simplex Algorithms for the
Elastic Demand Traffic Assignment Problem (see pages 31-555.

The Solution of a Broad Class of Network Design Problems by the use
of a Traffic Assignment Algorithm and a Language Multiplier Techni.que

(see pages LL-69).

The Lexico-Graphic Objective Function was_Introduced as a Technique
to Solve the Problem of the Optimal Staging of Investments over time.
(see pages 76-89).

Geographic Decomposition Applied to the Traffic Assignment and Sub-
Area Focusing Problems (see pages 92-112),

The innovations of "3" and "L have been implemented in a computer code,
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